det_keypoint_unite_infer.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import json
import cv2
import math
import numpy as np
import paddle
import yaml

from det_keypoint_unite_utils import argsparser
from preprocess import decode_image
from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log
from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint
from visualize import visualize_pose
from utils import get_current_memory_mb
from keypoint_postprocess import translate_to_ori_images

KEYPOINT_SUPPORT_MODELS = {
    'HigherHRNet': 'keypoint_bottomup',
    'HRNet': 'keypoint_topdown'
}


def predict_with_given_det(image, det_res, keypoint_detector,
                           keypoint_batch_size, run_benchmark):
    keypoint_res = {}

    rec_images, records, det_rects = keypoint_detector.get_person_from_rect(
        image, det_res)

    if len(det_rects) == 0:
        keypoint_res['keypoint'] = [[], []]
        return keypoint_res

    keypoint_vector = []
    score_vector = []

    rect_vector = det_rects
    keypoint_results = keypoint_detector.predict_image(
        rec_images, run_benchmark, repeats=10, visual=False)
    keypoint_vector, score_vector = translate_to_ori_images(keypoint_results,
                                                            np.array(records))
    keypoint_res['keypoint'] = [
        keypoint_vector.tolist(), score_vector.tolist()
    ] if len(keypoint_vector) > 0 else [[], []]
    keypoint_res['bbox'] = rect_vector
    return keypoint_res


def topdown_unite_predict(FLAGS,
                          detector,
                          topdown_keypoint_detector,
                          img_numpy,
                          keypoint_batch_size=1,
                          save_res=False):

    store_res = []
   
    # Decode image in advance in det + pose prediction
    image, _ = decode_image(img_numpy.copy(), {})

    results = detector.predict_image([image], visual=False)
    results = detector.filter_box(results, 0.5)
    if results['boxes_num'] > 0:
        keypoint_res = predict_with_given_det(
            image, results, topdown_keypoint_detector, keypoint_batch_size,
            False)

        store_res.append([
              keypoint_res['bbox'],
             [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
            ])
    else:
        results["keypoint"] = [[], []]
        keypoint_res = results

    pose_img = visualize_pose(
        img_numpy,
        keypoint_res,
        visual_thresh=FLAGS.keypoint_threshold,
        returnimg=True)

    return pose_img,store_res

def topdown_unite_predict_video(FLAGS,
                                detector,
                                topdown_keypoint_detector,
                                camera_id,
                                keypoint_batch_size=1,
                                save_res=False):
    
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name,suffix = FLAGS.video_file.split('.')
        video_name = video_name+"_output."+suffix
    # Get Video info : resolution, fps, frame count
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

   
    fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
    writer = cv2.VideoWriter(video_name, fourcc, fps, (width, height))
    index = 0
    store_res = []
    keypoint_smoothing = KeypointSmoothing(
        width, height, filter_type=FLAGS.filter_type, beta=0.05)

    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        index += 1
        

        frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        results = detector.predict_image([frame2], visual=False)
        results = detector.filter_box(results, FLAGS.det_threshold)
        if results['boxes_num'] == 0:
            writer.write(frame)
            continue

        keypoint_res = predict_with_given_det(
            frame2, results, topdown_keypoint_detector, keypoint_batch_size,
            FLAGS.run_benchmark)

        if FLAGS.smooth and len(keypoint_res['keypoint'][0]) == 1:
            current_keypoints = np.array(keypoint_res['keypoint'][0][0])
            smooth_keypoints = keypoint_smoothing.smooth_process(
                current_keypoints)

            keypoint_res['keypoint'][0][0] = smooth_keypoints.tolist()

        im = visualize_pose(
            frame,
            keypoint_res,
            visual_thresh=FLAGS.keypoint_threshold,
            returnimg=True)

        store_res.append([
            index, keypoint_res['bbox'],
            [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
        ])

        writer.write(im)
        
    writer.release()
    
    return video_name,store_res


class KeypointSmoothing(object):
    # The following code are modified from:
    # https://github.com/jaantollander/OneEuroFilter

    def __init__(self,
                 width,
                 height,
                 filter_type,
                 alpha=0.5,
                 fc_d=0.1,
                 fc_min=0.1,
                 beta=0.1,
                 thres_mult=0.3):
        super(KeypointSmoothing, self).__init__()
        self.image_width = width
        self.image_height = height
        self.threshold = np.array([
            0.005, 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01,
            0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01
        ]) * thres_mult
        self.filter_type = filter_type
        self.alpha = alpha
        self.dx_prev_hat = None
        self.x_prev_hat = None
        self.fc_d = fc_d
        self.fc_min = fc_min
        self.beta = beta

        if self.filter_type == 'OneEuro':
            self.smooth_func = self.one_euro_filter
        elif self.filter_type == 'EMA':
            self.smooth_func = self.ema_filter
        else:
            raise ValueError('filter type must be one_euro or ema')

    def smooth_process(self, current_keypoints):
        if self.x_prev_hat is None:
            self.x_prev_hat = current_keypoints[:, :2]
            self.dx_prev_hat = np.zeros(current_keypoints[:, :2].shape)
            return current_keypoints
        else:
            result = current_keypoints
            num_keypoints = len(current_keypoints)
            for i in range(num_keypoints):
                result[i, :2] = self.smooth(current_keypoints[i, :2],
                                            self.threshold[i], i)
            return result

    def smooth(self, current_keypoint, threshold, index):
        distance = np.sqrt(
            np.square((current_keypoint[0] - self.x_prev_hat[index][0]) /
                      self.image_width) + np.square((current_keypoint[
                          1] - self.x_prev_hat[index][1]) / self.image_height))
        if distance < threshold:
            result = self.x_prev_hat[index]
        else:
            result = self.smooth_func(current_keypoint, self.x_prev_hat[index],
                                      index)

        return result

    def one_euro_filter(self, x_cur, x_pre, index):
        te = 1
        self.alpha = self.smoothing_factor(te, self.fc_d)
        dx_cur = (x_cur - x_pre) / te
        dx_cur_hat = self.exponential_smoothing(dx_cur, self.dx_prev_hat[index])

        fc = self.fc_min + self.beta * np.abs(dx_cur_hat)
        self.alpha = self.smoothing_factor(te, fc)
        x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
        self.dx_prev_hat[index] = dx_cur_hat
        self.x_prev_hat[index] = x_cur_hat
        return x_cur_hat

    def ema_filter(self, x_cur, x_pre, index):
        x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
        self.x_prev_hat[index] = x_cur_hat
        return x_cur_hat

    def smoothing_factor(self, te, fc):
        r = 2 * math.pi * fc * te
        return r / (r + 1)

    def exponential_smoothing(self, x_cur, x_pre, index=0):
        return self.alpha * x_cur + (1 - self.alpha) * x_pre


def def_keypoint(input_date):

    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
 
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    
    deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
    detector_func = 'Detector'
    if arch == 'PicoDet':
        detector_func = 'DetectorPicoDet'

    detector = eval(detector_func)(FLAGS.det_model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn,
                                   threshold=FLAGS.det_threshold)

    topdown_keypoint_detector = KeyPointDetector(
        FLAGS.keypoint_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.keypoint_batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        use_dark=FLAGS.use_dark)
    keypoint_arch = topdown_keypoint_detector.pred_config.arch
    assert KEYPOINT_SUPPORT_MODELS[
        keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.'

    if isinstance(input_date, str):
        FLAGS.video_file = input_date

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        pose_video,store_res = topdown_unite_predict_video(FLAGS,detector, topdown_keypoint_detector,
                                    FLAGS.camera_id, FLAGS.keypoint_batch_size,
                                    FLAGS.save_res)
        return pose_video,store_res
    else:
        # predict from image
        pose_img,store_res = topdown_unite_predict(FLAGS,detector, topdown_keypoint_detector, input_date,
                              FLAGS.keypoint_batch_size, FLAGS.save_res)
        return pose_img,store_res