# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import cv2 import math import numpy as np import paddle import yaml from det_keypoint_unite_utils import argsparser from preprocess import decode_image from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint from visualize import visualize_pose from utils import get_current_memory_mb from keypoint_postprocess import translate_to_ori_images KEYPOINT_SUPPORT_MODELS = { 'HigherHRNet': 'keypoint_bottomup', 'HRNet': 'keypoint_topdown' } def predict_with_given_det(image, det_res, keypoint_detector, keypoint_batch_size, run_benchmark): keypoint_res = {} rec_images, records, det_rects = keypoint_detector.get_person_from_rect( image, det_res) if len(det_rects) == 0: keypoint_res['keypoint'] = [[], []] return keypoint_res keypoint_vector = [] score_vector = [] rect_vector = det_rects keypoint_results = keypoint_detector.predict_image( rec_images, run_benchmark, repeats=10, visual=False) keypoint_vector, score_vector = translate_to_ori_images(keypoint_results, np.array(records)) keypoint_res['keypoint'] = [ keypoint_vector.tolist(), score_vector.tolist() ] if len(keypoint_vector) > 0 else [[], []] keypoint_res['bbox'] = rect_vector return keypoint_res def topdown_unite_predict(FLAGS, detector, topdown_keypoint_detector, img_numpy, keypoint_batch_size=1, save_res=False): store_res = [] # Decode image in advance in det + pose prediction image, _ = decode_image(img_numpy.copy(), {}) results = detector.predict_image([image], visual=False) results = detector.filter_box(results, 0.5) if results['boxes_num'] > 0: keypoint_res = predict_with_given_det( image, results, topdown_keypoint_detector, keypoint_batch_size, False) store_res.append([ keypoint_res['bbox'], [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]] ]) else: results["keypoint"] = [[], []] keypoint_res = results pose_img = visualize_pose( img_numpy, keypoint_res, visual_thresh=FLAGS.keypoint_threshold, returnimg=True) return pose_img,store_res def topdown_unite_predict_video(FLAGS, detector, topdown_keypoint_detector, camera_id, keypoint_batch_size=1, save_res=False): if camera_id != -1: capture = cv2.VideoCapture(camera_id) else: capture = cv2.VideoCapture(FLAGS.video_file) video_name,suffix = FLAGS.video_file.split('.') video_name = video_name+"_output."+suffix # Get Video info : resolution, fps, frame count width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("fps: %d, frame_count: %d" % (fps, frame_count)) fourcc = cv2.VideoWriter_fourcc(* 'mp4v') writer = cv2.VideoWriter(video_name, fourcc, fps, (width, height)) index = 0 store_res = [] keypoint_smoothing = KeypointSmoothing( width, height, filter_type=FLAGS.filter_type, beta=0.05) while (1): ret, frame = capture.read() if not ret: break index += 1 frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = detector.predict_image([frame2], visual=False) results = detector.filter_box(results, FLAGS.det_threshold) if results['boxes_num'] == 0: writer.write(frame) continue keypoint_res = predict_with_given_det( frame2, results, topdown_keypoint_detector, keypoint_batch_size, FLAGS.run_benchmark) if FLAGS.smooth and len(keypoint_res['keypoint'][0]) == 1: current_keypoints = np.array(keypoint_res['keypoint'][0][0]) smooth_keypoints = keypoint_smoothing.smooth_process( current_keypoints) keypoint_res['keypoint'][0][0] = smooth_keypoints.tolist() im = visualize_pose( frame, keypoint_res, visual_thresh=FLAGS.keypoint_threshold, returnimg=True) store_res.append([ index, keypoint_res['bbox'], [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]] ]) writer.write(im) writer.release() return video_name,store_res class KeypointSmoothing(object): # The following code are modified from: # https://github.com/jaantollander/OneEuroFilter def __init__(self, width, height, filter_type, alpha=0.5, fc_d=0.1, fc_min=0.1, beta=0.1, thres_mult=0.3): super(KeypointSmoothing, self).__init__() self.image_width = width self.image_height = height self.threshold = np.array([ 0.005, 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 ]) * thres_mult self.filter_type = filter_type self.alpha = alpha self.dx_prev_hat = None self.x_prev_hat = None self.fc_d = fc_d self.fc_min = fc_min self.beta = beta if self.filter_type == 'OneEuro': self.smooth_func = self.one_euro_filter elif self.filter_type == 'EMA': self.smooth_func = self.ema_filter else: raise ValueError('filter type must be one_euro or ema') def smooth_process(self, current_keypoints): if self.x_prev_hat is None: self.x_prev_hat = current_keypoints[:, :2] self.dx_prev_hat = np.zeros(current_keypoints[:, :2].shape) return current_keypoints else: result = current_keypoints num_keypoints = len(current_keypoints) for i in range(num_keypoints): result[i, :2] = self.smooth(current_keypoints[i, :2], self.threshold[i], i) return result def smooth(self, current_keypoint, threshold, index): distance = np.sqrt( np.square((current_keypoint[0] - self.x_prev_hat[index][0]) / self.image_width) + np.square((current_keypoint[ 1] - self.x_prev_hat[index][1]) / self.image_height)) if distance < threshold: result = self.x_prev_hat[index] else: result = self.smooth_func(current_keypoint, self.x_prev_hat[index], index) return result def one_euro_filter(self, x_cur, x_pre, index): te = 1 self.alpha = self.smoothing_factor(te, self.fc_d) dx_cur = (x_cur - x_pre) / te dx_cur_hat = self.exponential_smoothing(dx_cur, self.dx_prev_hat[index]) fc = self.fc_min + self.beta * np.abs(dx_cur_hat) self.alpha = self.smoothing_factor(te, fc) x_cur_hat = self.exponential_smoothing(x_cur, x_pre) self.dx_prev_hat[index] = dx_cur_hat self.x_prev_hat[index] = x_cur_hat return x_cur_hat def ema_filter(self, x_cur, x_pre, index): x_cur_hat = self.exponential_smoothing(x_cur, x_pre) self.x_prev_hat[index] = x_cur_hat return x_cur_hat def smoothing_factor(self, te, fc): r = 2 * math.pi * fc * te return r / (r + 1) def exponential_smoothing(self, x_cur, x_pre, index=0): return self.alpha * x_cur + (1 - self.alpha) * x_pre def def_keypoint(input_date): paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU' ], "device should be CPU, GPU or XPU" deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml') with open(deploy_file) as f: yml_conf = yaml.safe_load(f) arch = yml_conf['arch'] detector_func = 'Detector' if arch == 'PicoDet': detector_func = 'DetectorPicoDet' detector = eval(detector_func)(FLAGS.det_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, threshold=FLAGS.det_threshold) topdown_keypoint_detector = KeyPointDetector( FLAGS.keypoint_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.keypoint_batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, use_dark=FLAGS.use_dark) keypoint_arch = topdown_keypoint_detector.pred_config.arch assert KEYPOINT_SUPPORT_MODELS[ keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.' if isinstance(input_date, str): FLAGS.video_file = input_date # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: pose_video,store_res = topdown_unite_predict_video(FLAGS,detector, topdown_keypoint_detector, FLAGS.camera_id, FLAGS.keypoint_batch_size, FLAGS.save_res) return pose_video,store_res else: # predict from image pose_img,store_res = topdown_unite_predict(FLAGS,detector, topdown_keypoint_detector, input_date, FLAGS.keypoint_batch_size, FLAGS.save_res) return pose_img,store_res