train.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
import os
import numpy as np
import time
import sys
import paddle.v2 as paddle
import paddle.fluid as fluid
from se_resnext import SE_ResNeXt
import reader

import argparse
import functools
from utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',   int,  256, "Minibatch size.")
add_arg('num_layers',   int,  50,  "How many layers for SE-ResNeXt model.")
add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.")
add_arg('parallel_exe', bool, True, "Whether to use ParallelExecutor to train or not.")
D
Dang Qingqing 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
# yapf: enable


def train_parallel_do(args,
                      learning_rate,
                      batch_size,
                      num_passes,
                      init_model=None,
                      model_save_dir='model',
                      parallel=True,
                      use_nccl=True,
                      lr_strategy=None,
                      layers=50):
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    class_dim = 1000
    image_shape = [3, 224, 224]

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if parallel:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)

        with pd.do():
            image_ = pd.read_input(image)
            label_ = pd.read_input(label)
            out = SE_ResNeXt(input=image_, class_dim=class_dim, layers=layers)
            cost = fluid.layers.cross_entropy(input=out, label=label_)
            avg_cost = fluid.layers.mean(x=cost)
            acc_top1 = fluid.layers.accuracy(input=out, label=label_, k=1)
            acc_top5 = fluid.layers.accuracy(input=out, label=label_, k=5)
            pd.write_output(avg_cost)
            pd.write_output(acc_top1)
            pd.write_output(acc_top5)

        avg_cost, acc_top1, acc_top5 = pd()
        avg_cost = fluid.layers.mean(x=avg_cost)
        acc_top1 = fluid.layers.mean(x=acc_top1)
        acc_top5 = fluid.layers.mean(x=acc_top5)
    else:
        out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
        cost = fluid.layers.cross_entropy(input=out, label=label)
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

D
Dang Qingqing 已提交
67 68
    inference_program = fluid.default_main_program().clone(for_test=True)

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    if lr_strategy is None:
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
    else:
        bd = lr_strategy["bd"]
        lr = lr_strategy["lr"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    opts = optimizer.minimize(avg_cost)
    if args.with_mem_opt:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if init_model is not None:
        fluid.io.load_persistables(exe, init_model)

    train_reader = paddle.batch(reader.train(), batch_size=batch_size)
    test_reader = paddle.batch(reader.test(), batch_size=batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    for pass_id in range(num_passes):
        train_info = [[], [], []]
        test_info = [[], [], []]
        for batch_id, data in enumerate(train_reader()):
            t1 = time.time()
            loss, acc1, acc5 = exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(data),
                fetch_list=[avg_cost, acc_top1, acc_top5])
            t2 = time.time()
            period = t2 - t1
            train_info[0].append(loss[0])
            train_info[1].append(acc1[0])
            train_info[2].append(acc5[0])
            if batch_id % 10 == 0:
                print("Pass {0}, trainbatch {1}, loss {2}, \
                       acc1 {3}, acc5 {4} time {5}"
                                                   .format(pass_id, \
                       batch_id, loss[0], acc1[0], acc5[0], \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
        for data in test_reader():
            t1 = time.time()
            loss, acc1, acc5 = exe.run(
                inference_program,
                feed=feeder.feed(data),
                fetch_list=[avg_cost, acc_top1, acc_top5])
            t2 = time.time()
            period = t2 - t1
            test_info[0].append(loss[0])
            test_info[1].append(acc1[0])
            test_info[2].append(acc5[0])
            if batch_id % 10 == 0:
                print("Pass {0},testbatch {1},loss {2}, \
                       acc1 {3},acc5 {4},time {5}"
                                                  .format(pass_id, \
                       batch_id, loss[0], acc1[0], acc5[0], \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()

        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
               test_loss {4}, test_acc1 {5}, test_acc5 {6}"
                                                           .format(pass_id, \
              train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
              test_acc5))
        sys.stdout.flush()

        model_path = os.path.join(model_save_dir, str(pass_id))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(exe, model_path)

D
Dang Qingqing 已提交
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
def train_parallel_exe(args,
                       learning_rate,
                       batch_size,
                       num_passes,
                       init_model=None,
                       model_save_dir='model',
                       parallel=True,
                       use_nccl=True,
                       lr_strategy=None,
                       layers=50):
    class_dim = 1000
    image_shape = [3, 224, 224]

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
    cost = fluid.layers.cross_entropy(input=out, label=label)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
    avg_cost = fluid.layers.mean(x=cost)

    test_program = fluid.default_main_program().clone(for_test=True)

    if lr_strategy is None:
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
    else:
        bd = lr_strategy["bd"]
        lr = lr_strategy["lr"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    opts = optimizer.minimize(avg_cost)

    if args.with_mem_opt:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if init_model is not None:
        fluid.io.load_persistables(exe, init_model)

    train_reader = paddle.batch(reader.train(), batch_size=batch_size)
    test_reader = paddle.batch(reader.test(), batch_size=batch_size)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
    test_exe = fluid.ParallelExecutor(
D
Dang Qingqing 已提交
214
        use_cuda=True, main_program=test_program, share_vars_from=train_exe)
215 216 217 218 219 220 221 222

    fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]

    for pass_id in range(num_passes):
        train_info = [[], [], []]
        test_info = [[], [], []]
        for batch_id, data in enumerate(train_reader()):
            t1 = time.time()
D
Dang Qingqing 已提交
223 224
            loss, acc1, acc5 = train_exe.run(fetch_list,
                                             feed_dict=feeder.feed(data))
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            t2 = time.time()
            period = t2 - t1
            loss = np.mean(np.array(loss))
            acc1 = np.mean(np.array(acc1))
            acc5 = np.mean(np.array(acc5))
            train_info[0].append(loss)
            train_info[1].append(acc1)
            train_info[2].append(acc5)
            if batch_id % 10 == 0:
                print("Pass {0}, trainbatch {1}, loss {2}, \
                       acc1 {3}, acc5 {4} time {5}"
                                                   .format(pass_id, \
                       batch_id, loss, acc1, acc5, \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
        for data in test_reader():
            t1 = time.time()
D
Dang Qingqing 已提交
246 247
            loss, acc1, acc5 = test_exe.run(fetch_list,
                                            feed_dict=feeder.feed(data))
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
            t2 = time.time()
            period = t2 - t1
            loss = np.mean(np.array(loss))
            acc1 = np.mean(np.array(acc1))
            acc5 = np.mean(np.array(acc5))
            test_info[0].append(loss)
            test_info[1].append(acc1)
            test_info[2].append(acc5)
            if batch_id % 10 == 0:
                print("Pass {0},testbatch {1},loss {2}, \
                       acc1 {3},acc5 {4},time {5}"
                                                  .format(pass_id, \
                       batch_id, loss, acc1, acc5, \
                       "%2.2f sec" % period))
                sys.stdout.flush()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()

        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
               test_loss {4}, test_acc1 {5}, test_acc5 {6}"
                                                           .format(pass_id, \
              train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
              test_acc5))
        sys.stdout.flush()

        model_path = os.path.join(model_save_dir, str(pass_id))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(exe, model_path)


if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)

    epoch_points = [30, 60, 90]
    total_images = 1281167
    batch_size = args.batch_size
    step = int(total_images / batch_size + 1)
    bd = [e * step for e in epoch_points]
    lr = [0.1, 0.01, 0.001, 0.0001]

    lr_strategy = {"bd": bd, "lr": lr}

    use_nccl = True
    # layers: 50, 152
    layers = args.num_layers
    method = train_parallel_exe if args.parallel_exe else train_parallel_do
D
Dang Qingqing 已提交
298 299 300 301 302 303 304 305 306 307
    method(
        args,
        learning_rate=0.1,
        batch_size=batch_size,
        num_passes=120,
        init_model=None,
        parallel=True,
        use_nccl=True,
        lr_strategy=lr_strategy,
        layers=layers)