async_data_reader.py 18.6 KB
Newer Older
1
"""This module contains data processing related logic.
Z
zhxfl 已提交
2
"""
3 4 5 6
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
zhxfl 已提交
7 8
import random
import struct
Y
yangyaming 已提交
9 10 11 12
import Queue
import time
import numpy as np
from threading import Thread
Y
yangyaming 已提交
13
import signal
Y
yangyaming 已提交
14
from multiprocessing import Manager, Process
15 16
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
Y
yangyaming 已提交
17
from data_utils.util import suppress_complaints, suppress_signal
18
from data_utils.util import CriticalException, ForceExitWrapper
19 20 21


class SampleInfo(object):
Y
yangyaming 已提交
22
    """SampleInfo holds the necessary information to load a sample from disk.
23

24 25 26 27 28 29 30
    Args:
        feature_bin_path (str): File containing the feature data.
        feature_start (int): Start position of the sample's feature data.
        feature_size (int): Byte count of the sample's feature data.
        feature_frame_num (int): Time length of the sample.
        feature_dim (int): Feature dimension of one frame.
        label_bin_path (str): File containing the label data.
Y
Yibing Liu 已提交
31
        label_size (int): Byte count of the sample's label data.
32
        label_frame_num (int): Label number of the sample.
Z
zhxfl 已提交
33 34
    """

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    def __init__(self, feature_bin_path, feature_start, feature_size,
                 feature_frame_num, feature_dim, label_bin_path, label_start,
                 label_size, label_frame_num):
        self.feature_bin_path = feature_bin_path
        self.feature_start = feature_start
        self.feature_size = feature_size
        self.feature_frame_num = feature_frame_num
        self.feature_dim = feature_dim

        self.label_bin_path = label_bin_path
        self.label_start = label_start
        self.label_size = label_size
        self.label_frame_num = label_frame_num


class SampleInfoBucket(object):
    """SampleInfoBucket contains paths of several description files. Feature
Y
Yibing Liu 已提交
52 53 54
    description file contains necessary information (including path of binary
    data, sample start position, sample byte number etc.) to access samples'
    feature data and the same with the label description file. SampleInfoBucket
Y
yangyaming 已提交
55
    is the minimum unit to do shuffle.
56

57
    Args:
Y
Yibing Liu 已提交
58
        feature_bin_paths (list|tuple): Files containing the binary feature
59
                                        data.
Y
Yibing Liu 已提交
60 61
        feature_desc_paths (list|tuple): Files containing the description of
                                         samples' feature data.
62 63 64
        label_bin_paths (list|tuple): Files containing the binary label data.
        label_desc_paths (list|tuple): Files containing the description of
                                       samples' label data.
Y
Yibing Liu 已提交
65
        split_perturb(int): Maximum perturbation value for length of
Z
zhxfl 已提交
66
                            sub-sentence when splitting long sentence.
Y
Yibing Liu 已提交
67
        split_sentence_threshold(int): Sentence whose length larger than
Z
zhxfl 已提交
68
                                the value will trigger split operation.
Y
Yibing Liu 已提交
69
        split_sub_sentence_len(int): sub-sentence length is equal to
70 71
                                    (split_sub_sentence_len
                                     + rand() % split_perturb).
Z
zhxfl 已提交
72
    """
73

74 75 76 77 78 79 80 81
    def __init__(self,
                 feature_bin_paths,
                 feature_desc_paths,
                 label_bin_paths,
                 label_desc_paths,
                 split_perturb=50,
                 split_sentence_threshold=512,
                 split_sub_sentence_len=256):
82 83 84 85 86 87 88 89 90 91
        block_num = len(label_bin_paths)
        assert len(label_desc_paths) == block_num
        assert len(feature_bin_paths) == block_num
        assert len(feature_desc_paths) == block_num
        self._block_num = block_num

        self._feature_bin_paths = feature_bin_paths
        self._feature_desc_paths = feature_desc_paths
        self._label_bin_paths = label_bin_paths
        self._label_desc_paths = label_desc_paths
92 93 94
        self._split_perturb = split_perturb
        self._split_sentence_threshold = split_sentence_threshold
        self._split_sub_sentence_len = split_sub_sentence_len
Z
zhxfl 已提交
95
        self._rng = random.Random(0)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    def generate_sample_info_list(self):
        sample_info_list = []
        for block_idx in xrange(self._block_num):
            label_bin_path = self._label_bin_paths[block_idx]
            label_desc_path = self._label_desc_paths[block_idx]
            feature_bin_path = self._feature_bin_paths[block_idx]
            feature_desc_path = self._feature_desc_paths[block_idx]

            label_desc_lines = open(label_desc_path).readlines()
            feature_desc_lines = open(feature_desc_path).readlines()

            sample_num = int(label_desc_lines[0].split()[1])
            assert sample_num == int(feature_desc_lines[0].split()[1])

            for i in xrange(sample_num):
                feature_desc_split = feature_desc_lines[i + 1].split()
                feature_start = int(feature_desc_split[2])
                feature_size = int(feature_desc_split[3])
                feature_frame_num = int(feature_desc_split[4])
                feature_dim = int(feature_desc_split[5])

                label_desc_split = label_desc_lines[i + 1].split()
                label_start = int(label_desc_split[2])
                label_size = int(label_desc_split[3])
                label_frame_num = int(label_desc_split[4])
Z
zhxfl 已提交
122
                assert feature_frame_num == label_frame_num
123

Z
zhxfl 已提交
124 125 126 127
                if self._split_sentence_threshold == -1 or \
                        self._split_perturb == -1 or \
                        self._split_sub_sentence_len == -1 \
                        or self._split_sentence_threshold >= feature_frame_num:
128 129 130 131 132
                    sample_info_list.append(
                        SampleInfo(feature_bin_path, feature_start,
                                   feature_size, feature_frame_num, feature_dim,
                                   label_bin_path, label_start, label_size,
                                   label_frame_num))
Y
Yibing Liu 已提交
133
                #split sentence
134 135 136 137 138 139
                else:
                    cur_frame_pos = 0
                    cur_frame_len = 0
                    remain_frame_num = feature_frame_num
                    while True:
                        if remain_frame_num > self._split_sentence_threshold:
Z
zhxfl 已提交
140 141
                            cur_frame_len = self._split_sub_sentence_len + \
                                    self._rng.randint(0, self._split_perturb)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                            if cur_frame_len > remain_frame_num:
                                cur_frame_len = remain_frame_num
                        else:
                            cur_frame_len = remain_frame_num

                        sample_info_list.append(
                            SampleInfo(
                                feature_bin_path, feature_start + cur_frame_pos
                                * feature_dim * 4, cur_frame_len * feature_dim *
                                4, cur_frame_len, feature_dim, label_bin_path,
                                label_start + cur_frame_pos * 4, cur_frame_len *
                                4, cur_frame_len))

                        remain_frame_num -= cur_frame_len
                        cur_frame_pos += cur_frame_len
                        if remain_frame_num <= 0:
                            break

160 161 162
        return sample_info_list


163 164 165 166
class EpochEndSignal():
    pass


167
class AsyncDataReader(object):
168
    """DataReader provides basic audio sample preprocessing pipeline including
Y
yangyaming 已提交
169
    data loading and data augmentation.
170

171
    Args:
Y
yangyaming 已提交
172 173
        feature_file_list (str): File containing paths of feature data file and
                                 corresponding description file.
Y
Yibing Liu 已提交
174
        label_file_list (str): File containing paths of label data file and
Y
yangyaming 已提交
175 176
                               corresponding description file.
        drop_frame_len (int): Samples whose label length above the value will be
177
                              dropped.(Using '-1' to disable the policy)
178
        proc_num (int): Number of processes for processing data.
Y
Yibing Liu 已提交
179
        sample_buffer_size (int): Buffer size to indicate the maximum samples
180
                                  cached.
Y
Yibing Liu 已提交
181
        sample_info_buffer_size (int): Buffer size to indicate the maximum
182
                                       sample information cached.
Y
Yibing Liu 已提交
183
        batch_buffer_size (int): Buffer size to indicate the maximum batch
Y
yangyaming 已提交
184
                                 cached.
Y
Yibing Liu 已提交
185
        shuffle_block_num (int): Block number indicating the minimum unit to do
186 187
                                 shuffle.
        random_seed (int): Random seed.
Y
Yibing Liu 已提交
188 189
        verbose (int): If set to 0, complaints including exceptions and signal
                       traceback from sub-process will be suppressed. If set
Y
yangyaming 已提交
190
                       to 1, all complaints will be printed.
Z
zhxfl 已提交
191 192
    """

Z
zhxfl 已提交
193 194 195 196
    def __init__(self,
                 feature_file_list,
                 label_file_list,
                 drop_frame_len=512,
197
                 proc_num=10,
Z
zhxfl 已提交
198 199
                 sample_buffer_size=1024,
                 sample_info_buffer_size=1024,
200
                 batch_buffer_size=10,
201
                 shuffle_block_num=10,
202 203
                 random_seed=0,
                 verbose=0):
204 205 206 207 208 209 210 211 212 213
        self._feature_file_list = feature_file_list
        self._label_file_list = label_file_list
        self._drop_frame_len = drop_frame_len
        self._shuffle_block_num = shuffle_block_num
        self._block_info_list = None
        self._rng = random.Random(random_seed)
        self._bucket_list = None
        self.generate_bucket_list(True)
        self._order_id = 0
        self._manager = Manager()
214 215
        self._sample_buffer_size = sample_buffer_size
        self._sample_info_buffer_size = sample_info_buffer_size
Y
yangyaming 已提交
216
        self._batch_buffer_size = batch_buffer_size
217
        self._proc_num = proc_num
218
        self._verbose = verbose
219
        self._force_exit = ForceExitWrapper(self._manager.Value('b', False))
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

    def generate_bucket_list(self, is_shuffle):
        if self._block_info_list is None:
            block_feature_info_lines = open(self._feature_file_list).readlines()
            block_label_info_lines = open(self._label_file_list).readlines()
            assert len(block_feature_info_lines) == len(block_label_info_lines)
            self._block_info_list = []
            for i in xrange(0, len(block_feature_info_lines), 2):
                block_info = (block_feature_info_lines[i],
                              block_feature_info_lines[i + 1],
                              block_label_info_lines[i],
                              block_label_info_lines[i + 1])
                self._block_info_list.append(
                    map(lambda line: line.strip(), block_info))

        if is_shuffle:
            self._rng.shuffle(self._block_info_list)

        self._bucket_list = []
        for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
            bucket_block_info = self._block_info_list[i:i +
                                                      self._shuffle_block_num]
            self._bucket_list.append(
                SampleInfoBucket(
                    map(lambda info: info[0], bucket_block_info),
                    map(lambda info: info[1], bucket_block_info),
                    map(lambda info: info[2], bucket_block_info),
                    map(lambda info: info[3], bucket_block_info)))

    # @TODO make this configurable
    def set_transformers(self, transformers):
        self._transformers = transformers

253 254 255
    def _sample_generator(self):
        sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
        sample_queue = self._manager.Queue(self._sample_buffer_size)
256 257
        self._order_id = 0

258
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
259
        def ordered_feeding_task(sample_info_queue):
260
            for sample_info_bucket in self._bucket_list:
261 262 263 264 265 266 267 268 269 270
                try:
                    sample_info_list = \
                            sample_info_bucket.generate_sample_info_list()
                except Exception as e:
                    raise CriticalException(e)
                else:
                    self._rng.shuffle(sample_info_list)  # do shuffle here
                    for sample_info in sample_info_list:
                        sample_info_queue.put((sample_info, self._order_id))
                        self._order_id += 1
271

272
            for i in xrange(self._proc_num):
273 274
                sample_info_queue.put(EpochEndSignal())

275 276 277 278
        feeding_thread = Thread(
            target=ordered_feeding_task, args=(sample_info_queue, ))
        feeding_thread.daemon = True
        feeding_thread.start()
279

280
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
281
        def ordered_processing_task(sample_info_queue, sample_queue, out_order):
Y
yangyaming 已提交
282
            if self._verbose == 0:
283 284
                signal.signal(signal.SIGTERM, suppress_signal)
                signal.signal(signal.SIGINT, suppress_signal)
Y
yangyaming 已提交
285

286
            def read_bytes(fpath, start, size):
287 288 289 290 291 292 293 294
                try:
                    f = open(fpath, 'r')
                    f.seek(start, 0)
                    binary_bytes = f.read(size)
                    f.close()
                    return binary_bytes
                except Exception as e:
                    raise CriticalException(e)
295 296 297 298 299 300 301 302 303 304

            ins = sample_info_queue.get()

            while not isinstance(ins, EpochEndSignal):
                sample_info, order_id = ins

                feature_bytes = read_bytes(sample_info.feature_bin_path,
                                           sample_info.feature_start,
                                           sample_info.feature_size)

305
                assert sample_info.feature_frame_num \
306 307 308 309 310 311
                       * sample_info.feature_dim * 4 \
                        == len(feature_bytes), \
                        (sample_info.feature_bin_path,
                         sample_info.feature_frame_num,
                         sample_info.feature_dim,
                         len(feature_bytes))
Z
zhxfl 已提交
312

313 314 315 316
                label_bytes = read_bytes(sample_info.label_bin_path,
                                         sample_info.label_start,
                                         sample_info.label_size)

Z
zhxfl 已提交
317 318 319 320
                assert sample_info.label_frame_num * 4 == len(label_bytes), (
                    sample_info.label_bin_path, sample_info.label_array,
                    len(label_bytes))

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
                label_array = struct.unpack('I' * sample_info.label_frame_num,
                                            label_bytes)
                label_data = np.array(
                    label_array, dtype='int64').reshape(
                        (sample_info.label_frame_num, 1))

                feature_frame_num = sample_info.feature_frame_num
                feature_dim = sample_info.feature_dim
                assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
                feature_array = struct.unpack('f' * feature_frame_num *
                                              feature_dim, feature_bytes)
                feature_data = np.array(
                    feature_array, dtype='float32').reshape((
                        sample_info.feature_frame_num, sample_info.feature_dim))

                sample_data = (feature_data, label_data)
                for transformer in self._transformers:
                    # @TODO(pkuyym) to make transfomer only accept feature_data
                    sample_data = transformer.perform_trans(sample_data)

                while order_id != out_order[0]:
                    time.sleep(0.001)

                # drop long sentence
Z
zhxfl 已提交
345 346
                if self._drop_frame_len == -1 or \
                        self._drop_frame_len >= sample_data[0].shape[0]:
347 348 349 350 351 352 353 354
                    sample_queue.put(sample_data)

                out_order[0] += 1
                ins = sample_info_queue.get()

            sample_queue.put(EpochEndSignal())

        out_order = self._manager.list([0])
355 356 357 358 359 360
        args = (sample_info_queue, sample_queue, out_order)
        workers = [
            Process(
                target=ordered_processing_task, args=args)
            for _ in xrange(self._proc_num)
        ]
361

362 363 364
        for w in workers:
            w.daemon = True
            w.start()
365

366
        finished_proc_num = 0
Y
yangyaming 已提交
367

368 369 370 371 372 373
        while self._force_exit == False:
            try:
                sample = sample_queue.get_nowait()
            except Queue.Empty:
                time.sleep(0.001)
            else:
374
                if isinstance(sample, EpochEndSignal):
375 376 377 378 379
                    finished_proc_num += 1
                    if finished_proc_num >= self._proc_num:
                        break
                    else:
                        continue
380

381
                yield sample
Y
yangyaming 已提交
382

383 384 385 386 387 388 389 390 391 392 393 394 395
    def batch_iterator(self, batch_size, minimum_batch_size):
        def batch_to_ndarray(batch_samples, lod):
            assert len(batch_samples)
            frame_dim = batch_samples[0][0].shape[1]
            batch_feature = np.zeros((lod[-1], frame_dim), dtype="float32")
            batch_label = np.zeros((lod[-1], 1), dtype="int64")
            start = 0
            for sample in batch_samples:
                frame_num = sample[0].shape[0]
                batch_feature[start:start + frame_num, :] = sample[0]
                batch_label[start:start + frame_num, :] = sample[1]
                start += frame_num
            return (batch_feature, batch_label)
396

397 398 399 400 401 402 403 404 405 406 407 408 409
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
        def batch_assembling_task(sample_generator, batch_queue):
            batch_samples = []
            lod = [0]
            for sample in sample_generator():
                batch_samples.append(sample)
                lod.append(lod[-1] + sample[0].shape[0])
                if len(batch_samples) == batch_size:
                    (batch_feature, batch_label) = batch_to_ndarray(
                        batch_samples, lod)
                    batch_queue.put((batch_feature, batch_label, lod))
                    batch_samples = []
                    lod = [0]
410

411 412 413 414
            if len(batch_samples) >= minimum_batch_size:
                (batch_feature, batch_label) = batch_to_ndarray(batch_samples,
                                                                lod)
                batch_queue.put((batch_feature, batch_label, lod))
Y
yangyaming 已提交
415 416 417

            batch_queue.put(EpochEndSignal())

418
        batch_queue = Queue.Queue(self._batch_buffer_size)
Y
yangyaming 已提交
419

420
        assembling_thread = Thread(
Y
yangyaming 已提交
421
            target=batch_assembling_task,
422 423 424
            args=(self._sample_generator, batch_queue))
        assembling_thread.daemon = True
        assembling_thread.start()
Y
yangyaming 已提交
425

426
        while self._force_exit == False:
427
            try:
428
                batch_data = batch_queue.get_nowait()
429 430 431 432 433 434
            except Queue.Empty:
                time.sleep(0.001)
            else:
                if isinstance(batch_data, EpochEndSignal):
                    break
                yield batch_data