googlenet.py 5.2 KB
Newer Older
W
wwhu 已提交
1 2 3 4 5
import paddle.v2 as paddle

__all__ = ['googlenet']


6 7
def inception(name, input, channels, filter1, filter3R, filter3, filter5R,
              filter5, proj):
W
wwhu 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    cov1 = paddle.layer.img_conv(
        name=name + '_1',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter1,
        stride=1,
        padding=0)

    cov3r = paddle.layer.img_conv(
        name=name + '_3r',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter3R,
        stride=1,
        padding=0)
    cov3 = paddle.layer.img_conv(
        name=name + '_3',
        input=cov3r,
        filter_size=3,
        num_filters=filter3,
        stride=1,
        padding=1)

    cov5r = paddle.layer.img_conv(
        name=name + '_5r',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter5R,
        stride=1,
        padding=0)
    cov5 = paddle.layer.img_conv(
        name=name + '_5',
        input=cov5r,
        filter_size=5,
        num_filters=filter5,
        stride=1,
        padding=2)

    pool1 = paddle.layer.img_pool(
        name=name + '_max',
        input=input,
        pool_size=3,
        num_channels=channels,
        stride=1,
        padding=1)
    covprj = paddle.layer.img_conv(
        name=name + '_proj',
        input=pool1,
        filter_size=1,
        num_filters=proj,
        stride=1,
        padding=0)

    cat = paddle.layer.concat(name=name, input=[cov1, cov3, cov5, covprj])
    return cat


68
def googlenet(input, class_dim):
W
wwhu 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    # stage 1
    conv1 = paddle.layer.img_conv(
        name="conv1",
        input=input,
        filter_size=7,
        num_channels=3,
        num_filters=64,
        stride=2,
        padding=3)
    pool1 = paddle.layer.img_pool(
        name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)

    # stage 2
    conv2_1 = paddle.layer.img_conv(
        name="conv2_1",
        input=pool1,
        filter_size=1,
        num_filters=64,
        stride=1,
        padding=0)
    conv2_2 = paddle.layer.img_conv(
        name="conv2_2",
        input=conv2_1,
        filter_size=3,
        num_filters=192,
        stride=1,
        padding=1)
    pool2 = paddle.layer.img_pool(
        name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)

    # stage 3
100 101
    ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
    ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
W
wwhu 已提交
102 103 104 105
    pool3 = paddle.layer.img_pool(
        name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)

    # stage 4
106 107 108 109 110
    ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
    ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
    ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
    ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
    ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
W
wwhu 已提交
111 112 113 114
    pool4 = paddle.layer.img_pool(
        name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)

    # stage 5
115 116
    ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
    ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
W
wwhu 已提交
117 118 119 120 121 122 123 124 125 126 127 128
    pool5 = paddle.layer.img_pool(
        name="pool5",
        input=ince5b,
        num_channels=1024,
        pool_size=7,
        stride=7,
        pool_type=paddle.pooling.Avg())
    dropout = paddle.layer.addto(
        input=pool5,
        layer_attr=paddle.attr.Extra(drop_rate=0.4),
        act=paddle.activation.Linear())

129 130 131
    out = paddle.layer.fc(input=dropout,
                          size=class_dim,
                          act=paddle.activation.Softmax())
W
wwhu 已提交
132

W
wwhu 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    # fc for output 1
    pool_o1 = paddle.layer.img_pool(
        name="pool_o1",
        input=ince4a,
        num_channels=512,
        pool_size=5,
        stride=3,
        pool_type=paddle.pooling.Avg())
    conv_o1 = paddle.layer.img_conv(
        name="conv_o1",
        input=pool_o1,
        filter_size=1,
        num_filters=128,
        stride=1,
        padding=0)
148 149 150 151 152 153 154 155
    fc_o1 = paddle.layer.fc(name="fc_o1",
                            input=conv_o1,
                            size=1024,
                            layer_attr=paddle.attr.Extra(drop_rate=0.7),
                            act=paddle.activation.Relu())
    out1 = paddle.layer.fc(input=fc_o1,
                           size=class_dim,
                           act=paddle.activation.Softmax())
W
wwhu 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    # fc for output 2
    pool_o2 = paddle.layer.img_pool(
        name="pool_o2",
        input=ince4d,
        num_channels=528,
        pool_size=5,
        stride=3,
        pool_type=paddle.pooling.Avg())
    conv_o2 = paddle.layer.img_conv(
        name="conv_o2",
        input=pool_o2,
        filter_size=1,
        num_filters=128,
        stride=1,
        padding=0)
172 173 174 175 176 177 178 179
    fc_o2 = paddle.layer.fc(name="fc_o2",
                            input=conv_o2,
                            size=1024,
                            layer_attr=paddle.attr.Extra(drop_rate=0.7),
                            act=paddle.activation.Relu())
    out2 = paddle.layer.fc(input=fc_o2,
                           size=class_dim,
                           act=paddle.activation.Softmax())
W
wwhu 已提交
180

W
wwhu 已提交
181
    return out, out1, out2