提交 6dd3895e 编写于 作者: W wwhu

add v2 API for imagenet models

上级 d5cc1155
import paddle.v2 as paddle
__all__ = ['alexnet']
def alexnet(input):
conv1 = paddle.layer.img_conv(
input=input,
filter_size=11,
num_channels=3,
num_filters=96,
stride=4,
padding=1)
cmrnorm1 = paddle.layer.img_cmrnorm(
input=conv1, size=5, scale=0.0001, power=0.75)
pool1 = paddle.layer.img_pool(input=cmrnorm1, pool_size=3, stride=2)
conv2 = paddle.layer.img_conv(
input=pool1,
filter_size=5,
num_filters=256,
stride=1,
padding=2,
groups=1)
cmrnorm2 = paddle.layer.img_cmrnorm(
input=conv2, size=5, scale=0.0001, power=0.75)
pool2 = paddle.layer.img_pool(input=cmrnorm2, pool_size=3, stride=2)
pool3 = paddle.networks.img_conv_group(
input=pool2,
pool_size=3,
pool_stride=2,
conv_num_filter=[384, 384, 256],
conv_filter_size=3,
pool_type=paddle.pooling.Max())
fc1 = paddle.layer.fc(
input=pool3,
size=4096,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
fc2 = paddle.layer.fc(
input=fc1,
size=4096,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
return fc2
import paddle.v2 as paddle
__all__ = ['googlenet']
def inception(name, input, channels, filter1, filter3R, filter3, filter5R,
filter5, proj):
cov1 = paddle.layer.conv_projection(
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter1,
stride=1,
padding=0)
cov3r = paddle.layer.img_conv(
name=name + '_3r',
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter3R,
stride=1,
padding=0)
cov3 = paddle.layer.conv_projection(
input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1)
cov5r = paddle.layer.img_conv(
name=name + '_5r',
input=input,
filter_size=1,
num_channels=channels,
num_filters=filter5R,
stride=1,
padding=0)
cov5 = paddle.layer.conv_projection(
input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2)
pool1 = paddle.layer.img_pool(
name=name + '_max',
input=input,
pool_size=3,
num_channels=channels,
stride=1,
padding=1)
covprj = paddle.layer.conv_projection(
input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0)
cat = paddle.layer.concat(
name=name,
input=[cov1, cov3, cov5, covprj],
bias_attr=True,
act=paddle.activation.Relu())
return cat
def googlenet(input):
# stage 1
conv1 = paddle.layer.img_conv(
name="conv1",
input=input,
filter_size=7,
num_channels=3,
num_filters=64,
stride=2,
padding=3)
pool1 = paddle.layer.img_pool(
name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)
# stage 2
conv2_1 = paddle.layer.img_conv(
name="conv2_1",
input=pool1,
filter_size=1,
num_filters=64,
stride=1,
padding=0)
conv2_2 = paddle.layer.img_conv(
name="conv2_2",
input=conv2_1,
filter_size=3,
num_filters=192,
stride=1,
padding=1)
pool2 = paddle.layer.img_pool(
name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)
# stage 3
ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
pool3 = paddle.layer.img_pool(
name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)
# stage 4
ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
pool4 = paddle.layer.img_pool(
name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)
# stage 5
ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
pool5 = paddle.layer.img_pool(
name="pool5",
input=ince5b,
num_channels=1024,
pool_size=7,
stride=7,
pool_type=paddle.pooling.Avg())
dropout = paddle.layer.addto(
input=pool5,
layer_attr=paddle.attr.Extra(drop_rate=0.4),
act=paddle.activation.Linear())
# fc for output 1
pool_o1 = paddle.layer.img_pool(
name="pool_o1",
input=ince4a,
num_channels=512,
pool_size=5,
stride=3,
pool_type=paddle.pooling.Avg())
conv_o1 = paddle.layer.img_conv(
name="conv_o1",
input=pool_o1,
filter_size=1,
num_filters=128,
stride=1,
padding=0)
fc_o1 = paddle.layer.fc(
name="fc_o1",
input=conv_o1,
size=1024,
layer_attr=paddle.attr.Extra(drop_rate=0.7),
act=paddle.activation.Relu())
# fc for output 2
pool_o2 = paddle.layer.img_pool(
name="pool_o2",
input=ince4d,
num_channels=528,
pool_size=5,
stride=3,
pool_type=paddle.pooling.Avg())
conv_o2 = paddle.layer.img_conv(
name="conv_o2",
input=pool_o2,
filter_size=1,
num_filters=128,
stride=1,
padding=0)
fc_o2 = paddle.layer.fc(
name="fc_o2",
input=conv_o2,
size=1024,
layer_attr=paddle.attr.Extra(drop_rate=0.7),
act=paddle.activation.Relu())
return dropout, fc_o1, fc_o2
import paddle.v2 as paddle
__all__ = ['resnet_imagenet', 'resnet_cifar10']
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
active_type=paddle.activation.Relu(),
ch_in=None):
tmp = paddle.layer.img_conv(
input=input,
filter_size=filter_size,
num_channels=ch_in,
num_filters=ch_out,
stride=stride,
padding=padding,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.batch_norm(input=tmp, act=active_type)
def shortcut(input, n_out, stride, b_projection):
if b_projection:
return conv_bn_layer(input, n_out, 1, stride, 0,
paddle.activation.Linear())
else:
return input
def basicblock(input, ch_out, stride, b_projection):
# TODO: bug fix for ch_in = input.num_filters
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, paddle.activation.Linear())
short = shortcut(input, ch_out, stride, b_projection)
return paddle.layer.addto(
input=[conv2, short], act=paddle.activation.Relu())
def bottleneck(input, ch_out, stride, b_projection):
# TODO: bug fix for ch_in = input.num_filters
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0,
paddle.activation.Linear())
short = shortcut(input, ch_out * 4, stride, b_projection)
return paddle.layer.addto(
input=[conv3, short], act=paddle.activation.Relu())
def layer_warp(block_func, input, features, count, stride):
conv = block_func(input, features, stride, True)
for i in range(1, count):
conv = block_func(conv, features, 1, False)
return conv
def resnet_imagenet(input, depth=50):
cfg = {
18: ([2, 2, 2, 1], basicblock),
34: ([3, 4, 6, 3], basicblock),
50: ([3, 4, 6, 3], bottleneck),
101: ([3, 4, 23, 3], bottleneck),
152: ([3, 8, 36, 3], bottleneck)
}
stages, block_func = cfg[depth]
conv1 = conv_bn_layer(
input, ch_in=3, ch_out=64, filter_size=7, stride=2, padding=3)
pool1 = paddle.layer.img_pool(input=conv1, pool_size=3, stride=2)
res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
res2 = layer_warp(block_func, res1, 128, stages[1], 2)
res3 = layer_warp(block_func, res2, 256, stages[2], 2)
res4 = layer_warp(block_func, res3, 512, stages[3], 2)
pool2 = paddle.layer.img_pool(
input=res4, pool_size=7, stride=1, pool_type=paddle.pooling.Avg())
return pool2
def resnet_cifar10(input, depth=32):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert (depth - 2) % 6 == 0
n = (depth - 2) / 6
nStages = {16, 64, 128}
conv1 = conv_bn_layer(
input, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, n, 1)
res2 = layer_warp(basicblock, res1, 32, n, 2)
res3 = layer_warp(basicblock, res2, 64, n, 2)
pool = paddle.layer.img_pool(
input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg())
return pool
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import gzip
import paddle.v2 as paddle
import reader
import vgg
import resnet
import alexnet
import googlenet
import argparse
import os
DATA_DIM = 3 * 224 * 224
CLASS_DIM = 1000
CLASS_DIM = 100
BATCH_SIZE = 128
def main():
# parse the argument
parser = argparse.ArgumentParser()
parser.add_argument(
'data_dir',
help='The data directory which contains train.list and val.list')
parser.add_argument(
'model',
help='The model for image classification',
choices=['alexnet', 'vgg13', 'vgg16', 'vgg19', 'resnet', 'googlenet'])
args = parser.parse_args()
# PaddlePaddle init
paddle.init(use_gpu=True, trainer_count=4)
paddle.init(use_gpu=True, trainer_count=1)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(DATA_DIM))
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(CLASS_DIM))
net = vgg.vgg13(image)
extra_layers = None
if args.model == 'alexnet':
net = alexnet.alexnet(image)
elif args.model == 'vgg13':
net = vgg.vgg13(image)
elif args.model == 'vgg16':
net = vgg.vgg16(image)
elif args.model == 'vgg19':
net = vgg.vgg19(image)
elif args.model == 'resnet':
net = resnet.resnet_imagenet(image)
elif args.model == 'googlenet':
net, fc_o1, fc_o2 = googlenet.googlenet(image)
out1 = paddle.layer.fc(
input=fc_o1, size=CLASS_DIM, act=paddle.activation.Softmax())
loss1 = paddle.layer.cross_entropy_cost(
input=out1, label=lbl, coeff=0.3)
paddle.evaluator.classification_error(input=out1, label=lbl)
out2 = paddle.layer.fc(
input=fc_o2, size=CLASS_DIM, act=paddle.activation.Softmax())
loss2 = paddle.layer.cross_entropy_cost(
input=out2, label=lbl, coeff=0.3)
paddle.evaluator.classification_error(input=out2, label=lbl)
extra_layers = [loss1, loss2]
out = paddle.layer.fc(
input=net, size=CLASS_DIM, act=paddle.activation.Softmax())
cost = paddle.layer.classification_cost(input=out, label=lbl)
......@@ -45,16 +70,19 @@ def main():
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
BATCH_SIZE),
learning_rate=0.01 / BATCH_SIZE,
learning_rate=0.001 / BATCH_SIZE,
learning_rate_decay_a=0.1,
learning_rate_decay_b=128000 * 35,
learning_rate_schedule="discexp", )
train_reader = paddle.batch(
paddle.reader.shuffle(reader.test_reader("train.list"), buf_size=1000),
paddle.reader.shuffle(
reader.test_reader(os.path.join(args.data_dir, 'train.list')),
buf_size=1000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
reader.train_reader("test.list"), batch_size=BATCH_SIZE)
reader.train_reader(os.path.join(args.data_dir, 'val.list')),
batch_size=BATCH_SIZE)
# End batch and end pass event handler
def event_handler(event):
......@@ -71,7 +99,10 @@ def main():
# Create trainer
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer)
cost=cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=extra_layers)
trainer.train(
reader=train_reader, num_passes=200, event_handler=event_handler)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册