widerface_eval.py 11.2 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
5 6 7 8 9 10 11 12 13 14
import os
import time
import numpy as np
import argparse
import functools
from PIL import Image

import paddle.fluid as fluid
import reader
from pyramidbox import PyramidBox
15
from visualize import draw_bboxes
Q
qingqing01 已提交
16 17 18
from utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
Q
qingqing01 已提交
19

Q
qingqing01 已提交
20
# yapf: disable
21 22 23 24 25 26 27 28 29
add_arg('use_gpu',         bool,  True,                              "Whether use GPU or not.")
add_arg('use_pyramidbox',  bool,  True,                              "Whether use PyramidBox model.")
add_arg('data_dir',        str,   'data/WIDER_val/images/',          "The validation dataset path.")
add_arg('model_dir',       str,   '',                                "The model path.")
add_arg('pred_dir',        str,   'pred',                            "The path to save the evaluation results.")
add_arg('file_list',       str,   'data/wider_face_split/wider_face_val_bbx_gt.txt', "The validation dataset path.")
add_arg('infer',           bool,  False,                             "Whether do infer or eval.")
add_arg('confs_threshold', float, 0.15,                              "Confidence threshold to draw bbox.")
add_arg('image_path',      str,   '',                                "The image used to inference and visualize.")
Q
qingqing01 已提交
30 31 32
# yapf: enable


Q
qingqing01 已提交
33 34 35 36 37 38
def infer(args, config):
    model_dir = args.model_dir
    pred_dir = args.pred_dir
    if not os.path.exists(model_dir):
        raise ValueError("The model path [%s] does not exist." % (model_dir))

39 40 41 42 43
    if args.infer:
        image_path = args.image_path
        image = Image.open(image_path)
        if image.mode == 'L':
            image = img.convert('RGB')
Q
qingqing01 已提交
44
        shrink, max_shrink = get_shrink(image.size[1], image.size[0])
Q
qingqing01 已提交
45

Q
qingqing01 已提交
46 47 48 49 50 51
        det0 = detect_face(image, shrink)
        det1 = flip_test(image, shrink)
        [det2, det3] = multi_scale_test(image, max_shrink)
        det4 = multi_scale_test_pyramid(image, max_shrink)
        det = np.row_stack((det0, det1, det2, det3, det4))
        dets = bbox_vote(det)
Q
qingqing01 已提交
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
        keep_index = np.where(dets[:, 4] >= args.confs_threshold)[0]
        dets = dets[keep_index, :]
        draw_bboxes(image_path, dets[:, 0:4])
    else:
        test_reader = reader.test(config, args.file_list)
        for image, image_path in test_reader():
            shrink, max_shrink = get_shrink(image.size[1], image.size[0])

            det0 = detect_face(image, shrink)
            det1 = flip_test(image, shrink)
            [det2, det3] = multi_scale_test(image, max_shrink)
            det4 = multi_scale_test_pyramid(image, max_shrink)
            det = np.row_stack((det0, det1, det2, det3, det4))
            dets = bbox_vote(det)
Q
qingqing01 已提交
67

68 69 70
            save_widerface_bboxes(image_path, dets, pred_dir)

        print("Finish evaluation.")
Q
qingqing01 已提交
71 72 73 74 75 76 77 78 79 80 81


def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
    """
    Save predicted results, including bbox and score into text file.
    Args:
        image_path (string): file name.
        bboxes_scores (np.array|list): the predicted bboxed and scores, layout
            is (xmin, ymin, xmax, ymax, score)
        output_dir (string): output directory.
    """
B
baiyfbupt 已提交
82 83
    image_name = image_path.split('/')[-1]
    image_class = image_path.split('/')[-2]
Q
qingqing01 已提交
84 85 86 87 88 89 90 91 92 93 94

    odir = os.path.join(output_dir, image_class)
    if not os.path.exists(odir):
        os.makedirs(odir)

    ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
    f = open(ofname, 'w')
    f.write('{:s}\n'.format(image_class + '/' + image_name))
    f.write('{:d}\n'.format(bboxes_scores.shape[0]))
    for box_score in bboxes_scores:
        xmin, ymin, xmax, ymax, score = box_score
B
baiyfbupt 已提交
95 96
        f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
            xmax - xmin + 1), (ymax - ymin + 1), score))
Q
qingqing01 已提交
97 98
    f.close()
    print("The predicted result is saved as {}".format(ofname))
B
baiyfbupt 已提交
99 100


Q
qingqing01 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
def detect_face(image, shrink):
    image_shape = [3, image.size[1], image.size[0]]
    if shrink != 1:
        h, w = int(image_shape[1] * shrink), int(image_shape[2] * shrink)
        image = image.resize((w, h), Image.ANTIALIAS)
        image_shape = [3, h, w]

    img = np.array(image)
    img = reader.to_chw_bgr(img)
    mean = [104., 117., 123.]
    scale = 0.007843
    img = img.astype('float32')
    img -= np.array(mean)[:, np.newaxis, np.newaxis].astype('float32')
    img = img * scale
    img = [img]
    img = np.array(img)

118 119 120 121 122
    detection, = exe.run(infer_program,
                         feed={'image': img},
                         fetch_list=fetches,
                         return_numpy=False)
    detection = np.array(detection)
Q
qingqing01 已提交
123 124 125 126 127 128 129 130 131 132 133 134
    # layout: xmin, ymin, xmax. ymax, score
    if detection.shape == (1, ):
        print("No face detected")
        return np.array([[0, 0, 0, 0, 0]])
    det_conf = detection[:, 1]
    det_xmin = image_shape[2] * detection[:, 2] / shrink
    det_ymin = image_shape[1] * detection[:, 3] / shrink
    det_xmax = image_shape[2] * detection[:, 4] / shrink
    det_ymax = image_shape[1] * detection[:, 5] / shrink

    det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
    return det
Q
qingqing01 已提交
135 136


B
baiyfbupt 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def bbox_vote(det):
    order = det[:, 4].ravel().argsort()[::-1]
    det = det[order, :]
    if det.shape[0] == 0:
        dets = np.array([[10, 10, 20, 20, 0.002]])
        det = np.empty(shape=[0, 5])
    while det.shape[0] > 0:
        # IOU
        area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
        xx1 = np.maximum(det[0, 0], det[:, 0])
        yy1 = np.maximum(det[0, 1], det[:, 1])
        xx2 = np.minimum(det[0, 2], det[:, 2])
        yy2 = np.minimum(det[0, 3], det[:, 3])
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        o = inter / (area[0] + area[:] - inter)

Q
qingqing01 已提交
155
        # nms
B
baiyfbupt 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        merge_index = np.where(o >= 0.3)[0]
        det_accu = det[merge_index, :]
        det = np.delete(det, merge_index, 0)
        if merge_index.shape[0] <= 1:
            if det.shape[0] == 0:
                try:
                    dets = np.row_stack((dets, det_accu))
                except:
                    dets = det_accu
            continue
        det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
        max_score = np.max(det_accu[:, 4])
        det_accu_sum = np.zeros((1, 5))
        det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
                                      axis=0) / np.sum(det_accu[:, -1:])
        det_accu_sum[:, 4] = max_score
        try:
            dets = np.row_stack((dets, det_accu_sum))
        except:
            dets = det_accu_sum
    dets = dets[0:750, :]
    return dets
Q
qingqing01 已提交
178 179


B
baiyfbupt 已提交
180
def flip_test(image, shrink):
181 182
    img = image.transpose(Image.FLIP_LEFT_RIGHT)
    det_f = detect_face(img, shrink)
B
baiyfbupt 已提交
183
    det_t = np.zeros(det_f.shape)
184
    # image.size: [width, height]
B
baiyfbupt 已提交
185
    det_t[:, 0] = image.size[0] - det_f[:, 2]
B
baiyfbupt 已提交
186
    det_t[:, 1] = det_f[:, 1]
B
baiyfbupt 已提交
187
    det_t[:, 2] = image.size[0] - det_f[:, 0]
B
baiyfbupt 已提交
188 189 190 191 192
    det_t[:, 3] = det_f[:, 3]
    det_t[:, 4] = det_f[:, 4]
    return det_t


B
baiyfbupt 已提交
193
def multi_scale_test(image, max_shrink):
Q
qingqing01 已提交
194
    # Shrink detecting is only used to detect big faces
B
baiyfbupt 已提交
195 196
    st = 0.5 if max_shrink >= 0.75 else 0.5 * max_shrink
    det_s = detect_face(image, st)
B
baiyfbupt 已提交
197 198 199 200
    index = np.where(
        np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1)
        > 30)[0]
    det_s = det_s[index, :]
Q
qingqing01 已提交
201
    # Enlarge one times
B
baiyfbupt 已提交
202 203
    bt = min(2, max_shrink) if max_shrink > 1 else (st + max_shrink) / 2
    det_b = detect_face(image, bt)
B
baiyfbupt 已提交
204

Q
qingqing01 已提交
205
    # Enlarge small image x times for small faces
B
baiyfbupt 已提交
206
    if max_shrink > 2:
B
baiyfbupt 已提交
207
        bt *= 2
B
baiyfbupt 已提交
208 209
        while bt < max_shrink:
            det_b = np.row_stack((det_b, detect_face(image, bt)))
B
baiyfbupt 已提交
210
            bt *= 2
B
baiyfbupt 已提交
211
        det_b = np.row_stack((det_b, detect_face(image, max_shrink)))
B
baiyfbupt 已提交
212

Q
qingqing01 已提交
213
    # Enlarged images are only used to detect small faces.
B
baiyfbupt 已提交
214 215 216 217 218
    if bt > 1:
        index = np.where(
            np.minimum(det_b[:, 2] - det_b[:, 0] + 1,
                       det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
        det_b = det_b[index, :]
Q
qingqing01 已提交
219
    # Shrinked images are only used to detect big faces.
B
baiyfbupt 已提交
220 221 222 223 224 225 226 227
    else:
        index = np.where(
            np.maximum(det_b[:, 2] - det_b[:, 0] + 1,
                       det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
        det_b = det_b[index, :]
    return det_s, det_b


228
def multi_scale_test_pyramid(image, max_shrink):
Q
qingqing01 已提交
229
    # Use image pyramids to detect faces
230 231 232 233 234 235
    det_b = detect_face(image, 0.25)
    index = np.where(
        np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
        > 30)[0]
    det_b = det_b[index, :]

Q
qingqing01 已提交
236
    st = [0.75, 1.25, 1.5, 1.75]
237 238 239
    for i in range(len(st)):
        if (st[i] <= max_shrink):
            det_temp = detect_face(image, st[i])
Q
qingqing01 已提交
240
            # Enlarged images are only used to detect small faces.
241 242 243 244 245
            if st[i] > 1:
                index = np.where(
                    np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
                               det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
                det_temp = det_temp[index, :]
Q
qingqing01 已提交
246
            # Shrinked images are only used to detect big faces.
247 248 249 250 251 252 253 254 255
            else:
                index = np.where(
                    np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
                               det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
                det_temp = det_temp[index, :]
            det_b = np.row_stack((det_b, det_temp))
    return det_b


Q
qingqing01 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def get_shrink(height, width):
    """
    Args:
        height (int): image height.
        width (int): image width.
    """
    # avoid out of memory
    max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
    max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5

    def get_round(x, loc):
        str_x = str(x)
        if '.' in str_x:
            str_before, str_after = str_x.split('.')
            len_after = len(str_after)
            if len_after >= 3:
                str_final = str_before + '.' + str_after[0:loc]
                return float(str_final)
            else:
                return x
B
baiyfbupt 已提交
276

Q
qingqing01 已提交
277
    max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
B
baiyfbupt 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
    if max_shrink >= 1.5 and max_shrink < 2:
        max_shrink = max_shrink - 0.1
    elif max_shrink >= 2 and max_shrink < 3:
        max_shrink = max_shrink - 0.2
    elif max_shrink >= 3 and max_shrink < 4:
        max_shrink = max_shrink - 0.3
    elif max_shrink >= 4 and max_shrink < 5:
        max_shrink = max_shrink - 0.4
    elif max_shrink >= 5:
        max_shrink = max_shrink - 0.5

    shrink = max_shrink if max_shrink < 1 else 1
    return shrink, max_shrink
B
baiyfbupt 已提交
291 292


Q
qingqing01 已提交
293 294 295
if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)
Q
qingqing01 已提交
296
    config = reader.Settings(data_dir=args.data_dir)
297 298 299 300 301 302 303 304

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    main_program = fluid.Program()
    startup_program = fluid.Program()
    image_shape = [3, 1024, 1024]
    with fluid.program_guard(main_program, startup_program):
        network = PyramidBox(
305 306 307
            data_shape=image_shape,
            sub_network=args.use_pyramidbox,
            is_infer=True)
308 309 310 311 312
        infer_program, nmsed_out = network.infer(main_program)
        fetches = [nmsed_out]
        fluid.io.load_persistables(
            exe, args.model_dir, main_program=main_program)

Q
qingqing01 已提交
313
    infer(args, config)