train.py 5.1 KB
Newer Older
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
import os
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'

import paddle
import paddle.fluid as fluid
import numpy as np
import argparse
from reader import CityscapeDataset
import reader
import models


def add_argument(name, type, default, help):
    parser.add_argument('--' + name, default=default, type=type, help=help)


def add_arguments():
    add_argument('batch_size', int, 2,
                 "The number of images in each batch during training.")
    add_argument('train_crop_size', int, 769,
                 "'Image crop size during training.")
    add_argument('base_lr', float, 0.0001,
                 "The base learning rate for model training.")
    add_argument('total_step', int, 90000, "Number of the training step.")
    add_argument('init_weights_path', str, None,
                 "Path of the initial weights in paddlepaddle format.")
    add_argument('save_weights_path', str, None,
                 "Path of the saved weights during training.")
    add_argument('dataset_path', str, None, "Cityscape dataset path.")
    add_argument('parallel', bool, False, "using ParallelExecutor.")
    add_argument('use_gpu', bool, True, "Whether use GPU or CPU.")


def load_model():
    if args.init_weights_path.endswith('/'):
        fluid.io.load_params(
            exe, dirname=args.init_weights_path, main_program=tp)
    else:
        fluid.io.load_params(
            exe, dirname="", filename=args.init_weights_path, main_program=tp)


def save_model():
    if args.save_weights_path.endswith('/'):
        fluid.io.save_params(
            exe, dirname=args.save_weights_path, main_program=tp)
    else:
        fluid.io.save_params(
            exe, dirname="", filename=args.save_weights_path, main_program=tp)


def loss(logit, label):
    label_nignore = (label < num_classes).astype('float32')
    label = fluid.layers.elementwise_min(
        label,
        fluid.layers.assign(np.array(
            [num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    label_nignore = fluid.layers.reshape(label_nignore, [-1, 1])
    loss = fluid.layers.softmax_with_cross_entropy(logit, label)
    loss = loss * label_nignore
    no_grad_set.add(label_nignore.name)
    no_grad_set.add(label.name)
    return loss, label_nignore


CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser()

add_arguments()

args = parser.parse_args()

models.clean()
models.bn_momentum = 0.9997
models.dropout_keep_prop = 0.9
deeplabv3p = models.deeplabv3p

sp = fluid.Program()
tp = fluid.Program()
crop_size = args.train_crop_size
batch_size = args.batch_size
image_shape = [crop_size, crop_size]
reader.default_config['crop_size'] = crop_size
reader.default_config['shuffle'] = True
num_classes = 19
weight_decay = 0.00004

base_lr = args.base_lr
total_step = args.total_step

no_grad_set = set()

with fluid.program_guard(tp, sp):
    img = fluid.layers.data(
        name='img', shape=[3] + image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=image_shape, dtype='int32')
    logit = deeplabv3p(img)
    pred = fluid.layers.argmax(logit, axis=1).astype('int32')
    loss, mask = loss(logit, label)
    lr = fluid.layers.polynomial_decay(
        base_lr, total_step, end_learning_rate=0, power=0.9)
    area = fluid.layers.elementwise_max(
        fluid.layers.reduce_mean(mask),
        fluid.layers.assign(np.array(
            [0.1], dtype=np.float32)))
    loss_mean = fluid.layers.reduce_mean(loss) / area

    opt = fluid.optimizer.Momentum(
        lr,
        momentum=0.9,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=weight_decay), )
    retv = opt.minimize(loss_mean, startup_program=sp, no_grad_set=no_grad_set)

fluid.memory_optimize(
    tp, print_log=False, skip_opt_set=[pred.name, loss_mean.name], level=1)

place = fluid.CPUPlace()
if args.use_gpu:
    place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(sp)

if args.init_weights_path:
132
    print("load from:", args.init_weights_path)
D
Dun 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    load_model()

dataset = CityscapeDataset(args.dataset_path, 'train')

if args.parallel:
    exe_p = fluid.ParallelExecutor(
        use_cuda=True, loss_name=loss_mean.name, main_program=tp)

batches = dataset.get_batch_generator(batch_size, total_step)

for i, imgs, labels, names in batches:
    if args.parallel:
        retv = exe_p.run(fetch_list=[pred.name, loss_mean.name],
                         feed={'img': imgs,
                               'label': labels})
    else:
        retv = exe.run(tp,
                       feed={'img': imgs,
                             'label': labels},
                       fetch_list=[pred, loss_mean])
    if i % 100 == 0:
154
        print("Model is saved to", args.save_weights_path)
D
Dun 已提交
155
        save_model()
156
    print("step %s, loss: %s" % (i, np.mean(retv[1])))
D
Dun 已提交
157

158
print("Training done. Model is saved to", args.save_weights_path)
D
Dun 已提交
159
save_model()