reader.py 6.2 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.utils.image_util import *
import random
from PIL import Image
from PIL import ImageDraw
import numpy as np
import xml.etree.ElementTree
import os
import time
import copy
import six
25
from collections import deque
J
jerrywgz 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

from roidbs import JsonDataset
import data_utils


class Settings(object):
    def __init__(self, args=None):
        for arg, value in sorted(six.iteritems(vars(args))):
            setattr(self, arg, value)

        if 'coco2014' in args.dataset:
            self.class_nums = 81
            self.train_file_list = 'annotations/instances_train2014.json'
            self.train_data_dir = 'train2014'
            self.val_file_list = 'annotations/instances_val2014.json'
            self.val_data_dir = 'val2014'
        elif 'coco2017' in args.dataset:
            self.class_nums = 81
            self.train_file_list = 'annotations/instances_train2017.json'
            self.train_data_dir = 'train2017'
            self.val_file_list = 'annotations/instances_val2017.json'
            self.val_data_dir = 'val2017'
        else:
            raise NotImplementedError('Dataset {} not supported'.format(
                self.dataset))
        self.mean_value = np.array(self.mean_value)[
            np.newaxis, np.newaxis, :].astype('float32')


55 56 57 58 59 60 61 62
def coco(settings,
         mode,
         batch_size=None,
         total_batch_size=None,
         padding_total=False,
         shuffle=False):
    total_batch_size = total_batch_size if total_batch_size else batch_size
    assert total_batch_size % batch_size == 0
J
jerrywgz 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    if mode == 'train':
        settings.train_file_list = os.path.join(settings.data_dir,
                                                settings.train_file_list)
        settings.train_data_dir = os.path.join(settings.data_dir,
                                               settings.train_data_dir)
    elif mode == 'test':
        settings.val_file_list = os.path.join(settings.data_dir,
                                              settings.val_file_list)
        settings.val_data_dir = os.path.join(settings.data_dir,
                                             settings.val_data_dir)
    json_dataset = JsonDataset(settings, train=(mode == 'train'))
    roidbs = json_dataset.get_roidb()

    print("{} on {} with {} roidbs".format(mode, settings.dataset, len(roidbs)))

78 79 80 81 82 83 84 85 86 87
    def roidb_reader(roidb):
        im, im_scales = data_utils.get_image_blob(roidb, settings)
        im_id = roidb['id']
        im_height = np.round(roidb['height'] * im_scales)
        im_width = np.round(roidb['width'] * im_scales)
        im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
        gt_boxes = roidb['gt_boxes'].astype('float32')
        gt_classes = roidb['gt_classes'].astype('int32')
        is_crowd = roidb['is_crowd'].astype('int32')
        return im, gt_boxes, gt_classes, is_crowd, im_info, im_id
J
jerrywgz 已提交
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def padding_minibatch(batch_data):
        if len(batch_data) == 1:
            return batch_data

        max_shape = np.array([data[0].shape for data in batch_data]).max(axis=0)

        padding_batch = []
        for data in batch_data:
            im_c, im_h, im_w = data[0].shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = data[0]
            padding_batch.append((padding_im, ) + data[1:])
        return padding_batch

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def reader():
        if mode == "train":
            roidb_perm = deque(np.random.permutation(roidbs))
            roidb_cur = 0
            batch_out = []
            while True:
                roidb = roidb_perm[0]
                roidb_cur += 1
                roidb_perm.rotate(-1)
                if roidb_cur >= len(roidbs):
                    roidb_perm = deque(np.random.permutation(roidbs))
                im, gt_boxes, gt_classes, is_crowd, im_info, im_id = roidb_reader(
                    roidb)
                if gt_boxes.shape[0] == 0:
                    continue
                batch_out.append(
                    (im, gt_boxes, gt_classes, is_crowd, im_info, im_id))
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
                if not padding_total:
                    if len(batch_out) == batch_size:
                        yield padding_minibatch(batch_out)
                        batch_out = []
                else:
                    if len(batch_out) == total_batch_size:
                        batch_out = padding_minibatch(batch_out)
                        for i in range(total_batch_size / batch_size):
                            sub_batch_out = []
                            for j in range(batch_size):
                                sub_batch_out.append(batch_out[i * batch_size +
                                                               j])
                            yield sub_batch_out
                            sub_batch_out = []
                        batch_out = []
136 137 138 139 140 141 142 143 144 145
        else:
            batch_out = []
            for roidb in roidbs:
                im, gt_boxes, gt_classes, is_crowd, im_info, im_id = roidb_reader(
                    roidb)
                batch_out.append(
                    (im, gt_boxes, gt_classes, is_crowd, im_info, im_id))
                if len(batch_out) == batch_size:
                    yield batch_out
                    batch_out = []
J
jerrywgz 已提交
146 147 148 149

    return reader


150 151 152 153 154 155 156 157 158 159 160 161
def train(settings,
          batch_size,
          total_batch_size=None,
          padding_total=False,
          shuffle=True):
    return coco(
        settings,
        'train',
        batch_size,
        total_batch_size,
        padding_total,
        shuffle=shuffle)
J
jerrywgz 已提交
162 163


164 165
def test(settings, batch_size, total_batch_size=None, padding_total=False):
    return coco(settings, 'test', batch_size, total_batch_size, shuffle=False)