reader.py 4.6 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.utils.image_util import *
import random
from PIL import Image
from PIL import ImageDraw
import numpy as np
import xml.etree.ElementTree
import os
import time
import copy
import six
25
from collections import deque
J
jerrywgz 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

from roidbs import JsonDataset
import data_utils


class Settings(object):
    def __init__(self, args=None):
        for arg, value in sorted(six.iteritems(vars(args))):
            setattr(self, arg, value)

        if 'coco2014' in args.dataset:
            self.class_nums = 81
            self.train_file_list = 'annotations/instances_train2014.json'
            self.train_data_dir = 'train2014'
            self.val_file_list = 'annotations/instances_val2014.json'
            self.val_data_dir = 'val2014'
        elif 'coco2017' in args.dataset:
            self.class_nums = 81
            self.train_file_list = 'annotations/instances_train2017.json'
            self.train_data_dir = 'train2017'
            self.val_file_list = 'annotations/instances_val2017.json'
            self.val_data_dir = 'val2017'
        else:
            raise NotImplementedError('Dataset {} not supported'.format(
                self.dataset))
        self.mean_value = np.array(self.mean_value)[
            np.newaxis, np.newaxis, :].astype('float32')


55
def coco(settings, mode, batch_size=None, shuffle=False):
J
jerrywgz 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    if mode == 'train':
        settings.train_file_list = os.path.join(settings.data_dir,
                                                settings.train_file_list)
        settings.train_data_dir = os.path.join(settings.data_dir,
                                               settings.train_data_dir)
    elif mode == 'test':
        settings.val_file_list = os.path.join(settings.data_dir,
                                              settings.val_file_list)
        settings.val_data_dir = os.path.join(settings.data_dir,
                                             settings.val_data_dir)
    json_dataset = JsonDataset(settings, train=(mode == 'train'))
    roidbs = json_dataset.get_roidb()

    print("{} on {} with {} roidbs".format(mode, settings.dataset, len(roidbs)))

71 72 73 74 75 76 77 78 79 80
    def roidb_reader(roidb):
        im, im_scales = data_utils.get_image_blob(roidb, settings)
        im_id = roidb['id']
        im_height = np.round(roidb['height'] * im_scales)
        im_width = np.round(roidb['width'] * im_scales)
        im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
        gt_boxes = roidb['gt_boxes'].astype('float32')
        gt_classes = roidb['gt_classes'].astype('int32')
        is_crowd = roidb['is_crowd'].astype('int32')
        return im, gt_boxes, gt_classes, is_crowd, im_info, im_id
J
jerrywgz 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def reader():
        if mode == "train":
            roidb_perm = deque(np.random.permutation(roidbs))
            roidb_cur = 0
            batch_out = []
            while True:
                roidb = roidb_perm[0]
                roidb_cur += 1
                roidb_perm.rotate(-1)
                if roidb_cur >= len(roidbs):
                    roidb_perm = deque(np.random.permutation(roidbs))
                im, gt_boxes, gt_classes, is_crowd, im_info, im_id = roidb_reader(
                    roidb)
                if gt_boxes.shape[0] == 0:
                    continue
                batch_out.append(
                    (im, gt_boxes, gt_classes, is_crowd, im_info, im_id))
                if len(batch_out) == batch_size:
                    yield batch_out
                    batch_out = []
        else:
            batch_out = []
            for roidb in roidbs:
                im, gt_boxes, gt_classes, is_crowd, im_info, im_id = roidb_reader(
                    roidb)
                batch_out.append(
                    (im, gt_boxes, gt_classes, is_crowd, im_info, im_id))
                if len(batch_out) == batch_size:
                    yield batch_out
                    batch_out = []
J
jerrywgz 已提交
112 113 114 115

    return reader


116 117
def train(settings, batch_size, shuffle=True):
    return coco(settings, 'train', batch_size, shuffle)
J
jerrywgz 已提交
118 119


120 121
def test(settings, batch_size):
    return coco(settings, 'test', batch_size, shuffle=False)