CycleGAN.py 13.7 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.CycleGAN_network import CycleGAN_model
from util import utility
import paddle.fluid as fluid
import sys
import time

lambda_A = 10.0
lambda_B = 10.0
lambda_identity = 0.5


class GTrainer():
    def __init__(self, input_A, input_B, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = CycleGAN_model()
            self.fake_B = model.network_G(input_A, name="GA", cfg=cfg)
            self.fake_B.persistable = True
            self.fake_A = model.network_G(input_B, name="GB", cfg=cfg)
            self.fake_A.persistable = True
            self.cyc_A = model.network_G(self.fake_B, name="GB", cfg=cfg)
            self.cyc_B = model.network_G(self.fake_A, name="GA", cfg=cfg)

            self.infer_program = self.program.clone()
            # Cycle Loss
            diff_A = fluid.layers.abs(
                fluid.layers.elementwise_sub(
                    x=input_A, y=self.cyc_A))
            diff_B = fluid.layers.abs(
                fluid.layers.elementwise_sub(
                    x=input_B, y=self.cyc_B))
            self.cyc_A_loss = fluid.layers.reduce_mean(diff_A) * lambda_A
L
lvmengsi 已提交
50
            self.cyc_A_loss.persistable = True
L
lvmengsi 已提交
51
            self.cyc_B_loss = fluid.layers.reduce_mean(diff_B) * lambda_B
L
lvmengsi 已提交
52
            self.cyc_B_loss.persistable = True
L
lvmengsi 已提交
53 54 55 56 57
            self.cyc_loss = self.cyc_A_loss + self.cyc_B_loss
            # GAN Loss D_A(G_A(A))
            self.fake_rec_A = model.network_D(self.fake_B, name="DA", cfg=cfg)
            self.G_A = fluid.layers.reduce_mean(
                fluid.layers.square(self.fake_rec_A - 1))
L
lvmengsi 已提交
58
            self.G_A.persistable = True
L
lvmengsi 已提交
59 60 61 62
            # GAN Loss D_B(G_B(B))
            self.fake_rec_B = model.network_D(self.fake_A, name="DB", cfg=cfg)
            self.G_B = fluid.layers.reduce_mean(
                fluid.layers.square(self.fake_rec_B - 1))
L
lvmengsi 已提交
63
            self.G_B.persistable = True
L
lvmengsi 已提交
64 65 66 67 68 69 70
            self.G = self.G_A + self.G_B
            # Identity Loss G_A
            self.idt_A = model.network_G(input_B, name="GA", cfg=cfg)
            self.idt_loss_A = fluid.layers.reduce_mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=input_B, y=self.idt_A))) * lambda_B * lambda_identity
L
lvmengsi 已提交
71
            self.idt_loss_A.persistable = True
L
lvmengsi 已提交
72 73 74 75 76 77
            # Identity Loss G_B
            self.idt_B = model.network_G(input_A, name="GB", cfg=cfg)
            self.idt_loss_B = fluid.layers.reduce_mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=input_A, y=self.idt_B))) * lambda_A * lambda_identity
L
lvmengsi 已提交
78
            self.idt_loss_B.persistable = True
L
lvmengsi 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

            self.idt_loss = fluid.layers.elementwise_add(self.idt_loss_A,
                                                         self.idt_loss_B)
            self.g_loss = self.cyc_loss + self.G + self.idt_loss

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("GA") or
                                                   var.name.startswith("GB")):
                    vars.append(var.name)
            self.param = vars
            lr = cfg.learning_rate
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch] +
                    [x * step_per_epoch for x in xrange(100, cfg.epoch - 1)],
                    values=[lr] + [
                        lr * (1.0 - (x - 99.0) / 101.0)
                        for x in xrange(100, cfg.epoch)
                    ]),
                beta1=0.5,
                beta2=0.999,
                name="net_G")
            optimizer.minimize(self.g_loss, parameter_list=vars)


class DATrainer():
    def __init__(self, input_B, fake_pool_B, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = CycleGAN_model()
            self.rec_B = model.network_D(input_B, name="DA", cfg=cfg)
            self.fake_pool_rec_B = model.network_D(
                fake_pool_B, name="DA", cfg=cfg)
            self.d_loss_A = (fluid.layers.square(self.fake_pool_rec_B) +
                             fluid.layers.square(self.rec_B - 1)) / 2.0
            self.d_loss_A = fluid.layers.reduce_mean(self.d_loss_A)
L
lvmengsi 已提交
116
            self.d_loss_A.persistable = True
L
lvmengsi 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith("DA"):
                    vars.append(var.name)

            self.param = vars
            lr = cfg.learning_rate
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch] +
                    [x * step_per_epoch for x in xrange(100, cfg.epoch - 1)],
                    values=[lr] + [
                        lr * (1.0 - (x - 99.0) / 101.0)
                        for x in xrange(100, cfg.epoch)
                    ]),
                beta1=0.5,
                beta2=0.999,
                name="net_DA")

            optimizer.minimize(self.d_loss_A, parameter_list=vars)


class DBTrainer():
    def __init__(self, input_A, fake_pool_A, cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = CycleGAN_model()
            self.rec_A = model.network_D(input_A, name="DB", cfg=cfg)
            self.fake_pool_rec_A = model.network_D(
                fake_pool_A, name="DB", cfg=cfg)
            self.d_loss_B = (fluid.layers.square(self.fake_pool_rec_A) +
                             fluid.layers.square(self.rec_A - 1)) / 2.0
            self.d_loss_B = fluid.layers.reduce_mean(self.d_loss_B)
L
lvmengsi 已提交
151
            self.d_loss_B.persistable = True
L
lvmengsi 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith("DB"):
                    vars.append(var.name)
            self.param = vars
            lr = 0.0002
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch] +
                    [x * step_per_epoch for x in xrange(100, cfg.epoch - 1)],
                    values=[lr] + [
                        lr * (1.0 - (x - 99.0) / 101.0)
                        for x in xrange(100, cfg.epoch)
                    ]),
                beta1=0.5,
                beta2=0.999,
                name="net_DB")
            optimizer.minimize(self.d_loss_B, parameter_list=vars)


class CycleGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--net_G',
            type=str,
            default="resnet_9block",
            help="Choose the CycleGAN generator's network, choose in [resnet_9block|resnet_6block|unet_128|unet_256]"
        )
        parser.add_argument(
            '--net_D',
            type=str,
            default="basic",
            help="Choose the CycleGAN discriminator's network, choose in [basic|nlayers|pixel]"
        )
        parser.add_argument(
            '--d_nlayers',
            type=int,
            default=3,
            help="only used when CycleGAN discriminator is nlayers")

        return parser

    def __init__(self,
                 cfg=None,
                 A_reader=None,
                 B_reader=None,
                 A_test_reader=None,
                 B_test_reader=None,
                 batch_num=1):
        self.cfg = cfg
        self.A_reader = A_reader
        self.B_reader = B_reader
        self.A_test_reader = A_test_reader
        self.B_test_reader = B_test_reader
        self.batch_num = batch_num

    def build_model(self):
        data_shape = [-1, 3, self.cfg.crop_size, self.cfg.crop_size]

        input_A = fluid.layers.data(
            name='input_A', shape=data_shape, dtype='float32')
        input_B = fluid.layers.data(
            name='input_B', shape=data_shape, dtype='float32')
        fake_pool_A = fluid.layers.data(
            name='fake_pool_A', shape=data_shape, dtype='float32')
        fake_pool_B = fluid.layers.data(
            name='fake_pool_B', shape=data_shape, dtype='float32')

        gen_trainer = GTrainer(input_A, input_B, self.cfg, self.batch_num)
        d_A_trainer = DATrainer(input_B, fake_pool_B, self.cfg, self.batch_num)
        d_B_trainer = DBTrainer(input_A, fake_pool_A, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        A_pool = utility.ImagePool()
        B_pool = utility.ImagePool()

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, d_A_trainer, "net_DA")
            utility.init_checkpoints(self.cfg, exe, d_B_trainer, "net_DB")

        ### memory optim
        build_strategy = fluid.BuildStrategy()
L
lvmengsi 已提交
239 240
        build_strategy.enable_inplace = True
        build_strategy.memory_optimize = True
L
lvmengsi 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        d_A_trainer_program = fluid.CompiledProgram(
            d_A_trainer.program).with_data_parallel(
                loss_name=d_A_trainer.d_loss_A.name,
                build_strategy=build_strategy)
        d_B_trainer_program = fluid.CompiledProgram(
            d_B_trainer.program).with_data_parallel(
                loss_name=d_B_trainer.d_loss_B.name,
                build_strategy=build_strategy)

        losses = [[], []]
        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
            for i in range(self.batch_num):
                data_A = next(self.A_reader())
                data_B = next(self.B_reader())
                tensor_A = fluid.LoDTensor()
                tensor_B = fluid.LoDTensor()
                tensor_A.set(data_A, place)
                tensor_B.set(data_B, place)
                s_time = time.time()
                # optimize the g_A network
                g_A_loss, g_A_cyc_loss, g_A_idt_loss, g_B_loss, g_B_cyc_loss,\
                g_B_idt_loss, fake_A_tmp, fake_B_tmp = exe.run(
                    gen_trainer_program,
                    fetch_list=[
                        gen_trainer.G_A, gen_trainer.cyc_A_loss,
                        gen_trainer.idt_loss_A, gen_trainer.G_B,
                        gen_trainer.cyc_B_loss, gen_trainer.idt_loss_B,
                        gen_trainer.fake_A, gen_trainer.fake_B
                    ],
                    feed={"input_A": tensor_A,
                          "input_B": tensor_B})

                fake_pool_B = B_pool.pool_image(fake_B_tmp)
                fake_pool_A = A_pool.pool_image(fake_A_tmp)

                # optimize the d_A network
                d_A_loss = exe.run(
                    d_A_trainer_program,
                    fetch_list=[d_A_trainer.d_loss_A],
                    feed={"input_B": tensor_B,
                          "fake_pool_B": fake_pool_B})[0]

                # optimize the d_B network
                d_B_loss = exe.run(
                    d_B_trainer_program,
                    fetch_list=[d_B_trainer.d_loss_B],
                    feed={"input_A": tensor_A,
                          "fake_pool_A": fake_pool_A})[0]

                batch_time = time.time() - s_time
                t_time += batch_time
                if batch_id % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}: \n\
                         d_A_loss: {}; g_A_loss: {}; g_A_cyc_loss: {}; g_A_idt_loss: {}; \n\
                         d_B_loss: {}; g_B_loss: {}; g_B_cyc_loss: {}; g_B_idt_loss: {}; \n\
                         Batch_time_cost: {:.2f}".format(
                        epoch_id, batch_id, d_A_loss[0], g_A_loss[0],
                        g_A_cyc_loss[0], g_A_idt_loss[0], d_B_loss[0], g_B_loss[
                            0], g_B_cyc_loss[0], g_B_idt_loss[0], batch_time))

                losses[0].append(g_A_loss[0])
                losses[1].append(d_A_loss[0])
                sys.stdout.flush()
                batch_id += 1

            if self.cfg.run_test:
                test_program = gen_trainer.infer_program
                utility.save_test_image(epoch_id, self.cfg, exe, place,
                                        test_program, gen_trainer,
                                        self.A_test_reader, self.B_test_reader)

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, d_A_trainer,
                                    "net_DA")
                utility.checkpoints(epoch_id, self.cfg, exe, d_B_trainer,
                                    "net_DB")