image_utils.py 8.0 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random

import box_utils


def random_distort(img):
    def random_brightness(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Brightness(img).enhance(e)

    def random_contrast(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Contrast(img).enhance(e)

    def random_color(img, lower=0.5, upper=1.5):
        e = np.random.uniform(lower, upper)
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
    np.random.shuffle(ops)

    img = Image.fromarray(img)
    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)
    img = np.asarray(img)

    return img


def random_crop(img,
                boxes,
                labels,
                scores,
                scales=[0.3, 1.0],
                max_ratio=2.0,
                constraints=None,
                max_trial=50):
    if len(boxes) == 0:
        return img, boxes

    if not constraints:
        constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),
                       (0.9, 1.0), (0.0, 1.0)]

    img = Image.fromarray(img)
    w, h = img.size
    crops = [(0, 0, w, h)]
    for min_iou, max_iou in constraints:
        for _ in range(max_trial):
            scale = random.uniform(scales[0], scales[1])
            aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \
                                          min(max_ratio, 1 / scale / scale))
            crop_h = int(h * scale / np.sqrt(aspect_ratio))
            crop_w = int(w * scale * np.sqrt(aspect_ratio))
            crop_x = random.randrange(w - crop_w)
            crop_y = random.randrange(h - crop_h)
            crop_box = np.array([[(crop_x + crop_w / 2.0) / w,
                                  (crop_y + crop_h / 2.0) / h,
                                  crop_w / float(w), crop_h / float(h)]])

            iou = box_utils.box_iou_xywh(crop_box, boxes)
            if min_iou <= iou.min() and max_iou >= iou.max():
                crops.append((crop_x, crop_y, crop_w, crop_h))
                break

    while crops:
        crop = crops.pop(np.random.randint(0, len(crops)))
        crop_boxes, crop_labels, crop_scores, box_num = \
            box_utils.box_crop(boxes, labels, scores, crop, (w, h))
        if box_num < 1:
            continue
        img = img.crop((crop[0], crop[1], crop[0] + crop[2],
                        crop[1] + crop[3])).resize(img.size, Image.LANCZOS)
        img = np.asarray(img)
        return img, crop_boxes, crop_labels, crop_scores
    img = np.asarray(img)
    return img, boxes, labels, scores


def random_flip(img, gtboxes, thresh=0.5):
    if random.random() > thresh:
        img = img[:, ::-1, :]
        gtboxes[:, 0] = 1.0 - gtboxes[:, 0]
    return img, gtboxes


def random_interp(img, size, interp=None):
    interp_method = [
        cv2.INTER_NEAREST,
        cv2.INTER_LINEAR,
        cv2.INTER_AREA,
        cv2.INTER_CUBIC,
        cv2.INTER_LANCZOS4,
    ]
    if not interp or interp not in interp_method:
        interp = interp_method[random.randint(0, len(interp_method) - 1)]
    h, w, _ = img.shape
    im_scale_x = size / float(w)
    im_scale_y = size / float(h)
    img = cv2.resize(
        img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)
    return img


def random_expand(img,
                  gtboxes,
                  max_ratio=4.,
                  fill=None,
                  keep_ratio=True,
                  thresh=0.5):
    if random.random() > thresh:
        return img, gtboxes

    if max_ratio < 1.0:
        return img, gtboxes

    h, w, c = img.shape
    ratio_x = random.uniform(1, max_ratio)
    if keep_ratio:
        ratio_y = ratio_x
    else:
        ratio_y = random.uniform(1, max_ratio)
    oh = int(h * ratio_y)
    ow = int(w * ratio_x)
    off_x = random.randint(0, ow - w)
    off_y = random.randint(0, oh - h)

    out_img = np.zeros((oh, ow, c))
    if fill and len(fill) == c:
        for i in range(c):
            out_img[:, :, i] = fill[i] * 255.0

    out_img[off_y:off_y + h, off_x:off_x + w, :] = img
    gtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)
    gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)
    gtboxes[:, 2] = gtboxes[:, 2] / ratio_x
    gtboxes[:, 3] = gtboxes[:, 3] / ratio_y

    return out_img.astype('uint8'), gtboxes


def shuffle_gtbox(gtbox, gtlabel, gtscore):
    gt = np.concatenate(
        [gtbox, gtlabel[:, np.newaxis], gtscore[:, np.newaxis]], axis=1)
    idx = np.arange(gt.shape[0])
    np.random.shuffle(idx)
    gt = gt[idx, :]
    return gt[:, :4], gt[:, 4], gt[:, 5]


def image_mixup(img1, gtboxes1, gtlabels1, gtscores1, img2, gtboxes2, gtlabels2,
                gtscores2):
    factor = np.random.beta(1.5, 1.5)
    factor = max(0.0, min(1.0, factor))
    if factor >= 1.0:
        return img1, gtboxes1, gtlabels1
    if factor <= 0.0:
        return img2, gtboxes2, gtlabels2
    gtscores1 = gtscores1 * factor
    gtscores2 = gtscores2 * (1.0 - factor)

    h = max(img1.shape[0], img2.shape[0])
    w = max(img1.shape[1], img2.shape[1])
    img = np.zeros((h, w, img1.shape[2]), 'float32')
    img[:img1.shape[0], :img1.shape[1], :] = img1.astype('float32') * factor
    img[:img2.shape[0], :img2.shape[1], :] += \
            img2.astype('float32') * (1.0 - factor)
    gtboxes = np.zeros_like(gtboxes1)
    gtlabels = np.zeros_like(gtlabels1)
    gtscores = np.zeros_like(gtscores1)

    gt_valid_mask1 = np.logical_and(gtboxes1[:, 2] > 0, gtboxes1[:, 3] > 0)
    gtboxes1 = gtboxes1[gt_valid_mask1]
    gtlabels1 = gtlabels1[gt_valid_mask1]
    gtscores1 = gtscores1[gt_valid_mask1]
    gtboxes1[:, 0] = gtboxes1[:, 0] * img1.shape[1] / w
    gtboxes1[:, 1] = gtboxes1[:, 1] * img1.shape[0] / h
    gtboxes1[:, 2] = gtboxes1[:, 2] * img1.shape[1] / w
    gtboxes1[:, 3] = gtboxes1[:, 3] * img1.shape[0] / h

    gt_valid_mask2 = np.logical_and(gtboxes2[:, 2] > 0, gtboxes2[:, 3] > 0)
    gtboxes2 = gtboxes2[gt_valid_mask2]
    gtlabels2 = gtlabels2[gt_valid_mask2]
    gtscores2 = gtscores2[gt_valid_mask2]
    gtboxes2[:, 0] = gtboxes2[:, 0] * img2.shape[1] / w
    gtboxes2[:, 1] = gtboxes2[:, 1] * img2.shape[0] / h
    gtboxes2[:, 2] = gtboxes2[:, 2] * img2.shape[1] / w
    gtboxes2[:, 3] = gtboxes2[:, 3] * img2.shape[0] / h

    gtboxes_all = np.concatenate((gtboxes1, gtboxes2), axis=0)
    gtlabels_all = np.concatenate((gtlabels1, gtlabels2), axis=0)
    gtscores_all = np.concatenate((gtscores1, gtscores2), axis=0)
    gt_num = min(len(gtboxes), len(gtboxes_all))
    gtboxes[:gt_num] = gtboxes_all[:gt_num]
    gtlabels[:gt_num] = gtlabels_all[:gt_num]
    gtscores[:gt_num] = gtscores_all[:gt_num]
    return img.astype('uint8'), gtboxes, gtlabels, gtscores


def image_augment(img, gtboxes, gtlabels, gtscores, size, means=None):
    img = random_distort(img)
    img, gtboxes = random_expand(img, gtboxes, fill=means)
    img, gtboxes, gtlabels, gtscores = \
            random_crop(img, gtboxes, gtlabels, gtscores)
    img = random_interp(img, size)
    img, gtboxes = random_flip(img, gtboxes)
    gtboxes, gtlabels, gtscores = shuffle_gtbox(gtboxes, gtlabels, gtscores)

    return img.astype('float32'), gtboxes.astype('float32'), \
            gtlabels.astype('int32'), gtscores.astype('float32')