train.py 19.8 KB
Newer Older
H
Hongyu Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import sys

import numpy as np
import paddle.fluid.profiler as profiler
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import data_reader
23
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, BatchNorm, Embedding, GRUUnit
H
Hongyu Liu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from paddle.fluid.dygraph.base import to_variable
import argparse
import functools
from utility import add_arguments, print_arguments, get_attention_feeder_data
import time

from paddle.fluid import framework

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   32,         "Minibatch size.")
add_arg('total_step',        int,   720000,    "The number of iterations. Zero or less means whole training set. More than 0 means the training set might be looped until # of iterations is reached.")
add_arg('log_period',        int,   1000,       "Log period.")
add_arg('save_model_period', int,   15000,      "Save model period. '-1' means never saving the model.")
add_arg('eval_period',       int,   15000,      "Evaluate period. '-1' means never evaluating the model.")
add_arg('save_model_dir',    str,   "./models", "The directory the model to be saved to.")
add_arg('train_images',      str,   None,       "The directory of images to be used for training.")
add_arg('train_list',        str,   None,       "The list file of images to be used for training.")
add_arg('test_images',       str,   None,       "The directory of images to be used for test.")
add_arg('test_list',         str,   None,       "The list file of images to be used for training.")
add_arg('init_model',        str,   None,       "The init model file of directory.")
add_arg('use_gpu',           bool,  True,      "Whether use GPU to train.")
add_arg('min_average_window',int,   10000,     "Min average window.")
add_arg('max_average_window',int,   12500,     "Max average window. It is proposed to be set as the number of minibatch in a pass.")
add_arg('average_window',    float, 0.15,      "Average window.")
add_arg('parallel',          bool,  False,     "Whether use parallel training.")
add_arg('profile',           bool,  False,      "Whether to use profiling.")
add_arg('skip_batch_num',    int,   0,          "The number of first minibatches to skip as warm-up for better performance test.")
add_arg('skip_test',         bool,  False,      "Whether to skip test phase.")


class Config(object):
    '''
    config for training
    '''
60 61
    # encoder rnn hidden_size
    encoder_size = 200
H
Hongyu Liu 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    # decoder size for decoder stage
    decoder_size = 128
    # size for word embedding
    word_vector_dim = 128
    # max length for label padding
    max_length = 100
    gradient_clip = 10
    LR = 1.0
    beam_size = 2
    learning_rate_decay = None

    # batch size to train
    batch_size = 32
    # class number to classify
    num_classes = 95

    use_gpu = False
    # special label for start and end
    SOS = 0
    EOS = 1

    # data shape for input image
    DATA_SHAPE = [1, 48, 512]


class ConvBNPool(fluid.dygraph.Layer):
    def __init__(self,
                 group,
                 out_ch,
                 channels,
                 act="relu",
                 is_test=False,
                 pool=True,
                 use_cudnn=True):
96
        super(ConvBNPool, self).__init__()
H
Hongyu Liu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
        self.group = group
        self.pool = pool

        filter_size = 3
        conv_std_0 = (2.0 / (filter_size**2 * channels[0]))**0.5
        conv_param_0 = fluid.ParamAttr(
            initializer=fluid.initializer.Normal(0.0, conv_std_0))

        conv_std_1 = (2.0 / (filter_size**2 * channels[1]))**0.5
        conv_param_1 = fluid.ParamAttr(
            initializer=fluid.initializer.Normal(0.0, conv_std_1))

        self.conv_0_layer = Conv2D(
110
            channels[0],
H
Hongyu Liu 已提交
111 112 113 114 115 116 117 118
            out_ch[0],
            3,
            padding=1,
            param_attr=conv_param_0,
            bias_attr=False,
            act=None,
            use_cudnn=use_cudnn)
        self.bn_0_layer = BatchNorm(
119
            out_ch[0], act=act, is_test=is_test)
H
Hongyu Liu 已提交
120
        self.conv_1_layer = Conv2D(
121
            out_ch[0],
H
Hongyu Liu 已提交
122 123 124 125 126 127 128 129
            num_filters=out_ch[1],
            filter_size=3,
            padding=1,
            param_attr=conv_param_1,
            bias_attr=False,
            act=None,
            use_cudnn=use_cudnn)
        self.bn_1_layer = BatchNorm(
130
            out_ch[1], act=act, is_test=is_test)
H
Hongyu Liu 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

        if self.pool:
            self.pool_layer = Pool2D(
                pool_size=2,
                pool_type='max',
                pool_stride=2,
                use_cudnn=use_cudnn,
                ceil_mode=True)

    def forward(self, inputs):
        conv_0 = self.conv_0_layer(inputs)
        bn_0 = self.bn_0_layer(conv_0)
        conv_1 = self.conv_1_layer(bn_0)
        bn_1 = self.bn_1_layer(conv_1)
        if self.pool:
            bn_pool = self.pool_layer(bn_1)

            return bn_pool
        return bn_1


class OCRConv(fluid.dygraph.Layer):
153 154
    def __init__(self,  is_test=False, use_cudnn=True):
        super(OCRConv, self).__init__()
H
Hongyu Liu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        self.conv_bn_pool_1 = ConvBNPool(
            2, [16, 16], [1, 16],
            is_test=is_test,
            use_cudnn=use_cudnn)
        self.conv_bn_pool_2 = ConvBNPool(
            2, [32, 32], [16, 32],
            is_test=is_test,
            use_cudnn=use_cudnn)
        self.conv_bn_pool_3 = ConvBNPool(
            2, [64, 64], [32, 64],
            is_test=is_test,
            use_cudnn=use_cudnn)
        self.conv_bn_pool_4 = ConvBNPool(
            2, [128, 128], [64, 128],
            is_test=is_test,
            pool=False,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        inputs_1 = self.conv_bn_pool_1(inputs)
        inputs_2 = self.conv_bn_pool_2(inputs_1)
        inputs_3 = self.conv_bn_pool_3(inputs_2)
        inputs_4 = self.conv_bn_pool_4(inputs_3)

        return inputs_4


class DynamicGRU(fluid.dygraph.Layer):
    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 candidate_activation='tanh',
                 h_0=None,
                 origin_mode=False,
                 init_size = None):
193
        super(DynamicGRU, self).__init__()
H
Hongyu Liu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

        self.gru_unit = GRUUnit(
            size * 3,
            param_attr=param_attr,
            bias_attr=bias_attr,
            activation=candidate_activation,
            gate_activation=gate_activation,
            origin_mode=origin_mode)

        self.size = size
        self.h_0 = h_0
        self.is_reverse = is_reverse


    def forward(self, inputs):
        hidden = self.h_0
        res = []


        for i in range(inputs.shape[1]):
            if self.is_reverse:
                i = inputs.shape[1] - 1 - i

            input_ = inputs[ :, i:i+1, :]

            input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
            hidden, reset, gate = self.gru_unit(input_, hidden)

            hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)

            res.append(hidden_)

        if self.is_reverse:
            res = res[::-1]
        res = fluid.layers.concat(res, axis=1)
        return res


class EncoderNet(fluid.dygraph.Layer):
    def __init__(self,
234
                 rnn_hidden_size=Config.encoder_size,
H
Hongyu Liu 已提交
235 236
                 is_test=False,
                 use_cudnn=True):
237
        super(EncoderNet, self).__init__()
H
Hongyu Liu 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        self.rnn_hidden_size = rnn_hidden_size
        para_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(0.0,
                                                                         0.02))
        bias_attr = fluid.ParamAttr(
            initializer=fluid.initializer.Normal(0.0, 0.02), learning_rate=2.0)
        if fluid.framework.in_dygraph_mode():
            h_0 = np.zeros(
                (Config.batch_size, rnn_hidden_size), dtype="float32")
            h_0 = to_variable(h_0)
        else:
            h_0 = fluid.layers.fill_constant(
                shape=[Config.batch_size, rnn_hidden_size],
                dtype='float32',
                value=0)
        self.ocr_convs = OCRConv(
253
            is_test=is_test, use_cudnn=use_cudnn)
H
Hongyu Liu 已提交
254

255
        self.fc_1_layer = Linear( 768,
H
Hongyu Liu 已提交
256 257
                             rnn_hidden_size * 3,
                             param_attr=para_attr,
258 259 260
                             bias_attr=False )
        print( "weight", self.fc_1_layer.weight.shape )
        self.fc_2_layer = Linear( 768,
H
Hongyu Liu 已提交
261 262
                             rnn_hidden_size * 3,
                             param_attr=para_attr,
263
                             bias_attr=False )
H
Hongyu Liu 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277
        self.gru_forward_layer = DynamicGRU(
            size=rnn_hidden_size,
            h_0=h_0,
            param_attr=para_attr,
            bias_attr=bias_attr,
            candidate_activation='relu')
        self.gru_backward_layer = DynamicGRU(
            size=rnn_hidden_size,
            h_0=h_0,
            param_attr=para_attr,
            bias_attr=bias_attr,
            candidate_activation='relu',
            is_reverse=True)

278
        self.encoded_proj_fc = Linear( rnn_hidden_size * 2,
H
Hongyu Liu 已提交
279
                                  Config.decoder_size,
280
                                  bias_attr=False )
H
Hongyu Liu 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    def forward(self, inputs):
        conv_features = self.ocr_convs(inputs)
        transpose_conv_features = fluid.layers.transpose(conv_features, perm=[0,3,1,2])

        sliced_feature = fluid.layers.reshape(
            transpose_conv_features, [-1, transpose_conv_features.shape[1] , transpose_conv_features.shape[2]*transpose_conv_features.shape[3]], inplace=False)

        fc_1 = self.fc_1_layer(sliced_feature)

        fc_2 = self.fc_2_layer(sliced_feature)

        gru_forward = self.gru_forward_layer(fc_1)

        gru_backward = self.gru_backward_layer(fc_2)

        encoded_vector = fluid.layers.concat(
            input=[gru_forward, gru_backward], axis=2)

        encoded_proj = self.encoded_proj_fc(encoded_vector)

        return gru_backward, encoded_vector, encoded_proj


class SimpleAttention(fluid.dygraph.Layer):
306 307
    def __init__(self, decoder_size):
        super(SimpleAttention, self).__init__()
H
Hongyu Liu 已提交
308

309
        self.fc_1 = Linear( decoder_size,
H
Hongyu Liu 已提交
310 311 312
                       decoder_size,
                       act=None,
                       bias_attr=False)
313
        self.fc_2 = Linear( decoder_size,
H
Hongyu Liu 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
                       1,
                       act=None,
                       bias_attr=False)

    def forward(self, encoder_vec, encoder_proj, decoder_state):

        decoder_state_fc = self.fc_1(decoder_state)

        decoder_state_proj_reshape = fluid.layers.reshape(
            decoder_state_fc, [-1, 1, decoder_state_fc.shape[1]], inplace=False)
        decoder_state_expand = fluid.layers.expand(
            decoder_state_proj_reshape, [1, encoder_proj.shape[1], 1])
        concated = fluid.layers.elementwise_add(encoder_proj,
                                                decoder_state_expand)
        concated = fluid.layers.tanh(x=concated)
        attention_weight = self.fc_2(concated)
        weights_reshape = fluid.layers.reshape(
            x=attention_weight, shape=[ concated.shape[0], -1], inplace=False)

        weights_reshape = fluid.layers.softmax( weights_reshape )
        scaled = fluid.layers.elementwise_mul(
            x=encoder_vec, y=weights_reshape, axis=0)

        context = fluid.layers.reduce_sum(scaled, dim=1)

        return context


class GRUDecoderWithAttention(fluid.dygraph.Layer):
343 344 345
    def __init__(self,  decoder_size, num_classes):
        super(GRUDecoderWithAttention, self).__init__()
        self.simple_attention = SimpleAttention(decoder_size)
H
Hongyu Liu 已提交
346

347 348
        self.fc_1_layer = Linear( input_dim = Config.encoder_size * 2,
                             output_dim=decoder_size * 3,
H
Hongyu Liu 已提交
349
                             bias_attr=False)
350 351
        self.fc_2_layer = Linear( input_dim = decoder_size,
                             output_dim=decoder_size * 3,
H
Hongyu Liu 已提交
352 353 354 355 356
                             bias_attr=False)
        self.gru_unit = GRUUnit(
            size=decoder_size * 3,
            param_attr=None,
            bias_attr=None)
357 358
        self.out_layer = Linear( input_dim = decoder_size,
                            output_dim =num_classes + 2,
H
Hongyu Liu 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
                            bias_attr=None,
                            act='softmax')

        self.decoder_size = decoder_size


    def forward(self, target_embedding, encoder_vec, encoder_proj,
                decoder_boot):
        res = []
        hidden_mem = decoder_boot
        for i in range(target_embedding.shape[1]):
            current_word = fluid.layers.slice(
                target_embedding, axes=[1], starts=[i], ends=[i + 1])
            current_word = fluid.layers.reshape(
                current_word, [-1, current_word.shape[2]], inplace=False)

            context = self.simple_attention(encoder_vec, encoder_proj,
                                            hidden_mem)
            fc_1 = self.fc_1_layer(context)
            fc_2 = self.fc_2_layer(current_word)
            decoder_inputs = fluid.layers.elementwise_add(x=fc_1, y=fc_2)

            h, _, _ = self.gru_unit(decoder_inputs, hidden_mem)
            hidden_mem = h
            out = self.out_layer(h)

            res.append(out)


        res1 = fluid.layers.concat(res, axis=1)

        batch_size = target_embedding.shape[0]
        seq_len = target_embedding.shape[1]
        res1 = layers.reshape( res1, shape=[batch_size, seq_len, -1])

        return res1


class OCRAttention(fluid.dygraph.Layer):
398 399 400 401 402
    def __init__(self):
        super(OCRAttention, self).__init__()
        self.encoder_net = EncoderNet()
        self.fc = Linear( input_dim = Config.encoder_size,
                     output_dim =Config.decoder_size,
H
Hongyu Liu 已提交
403 404 405
                     bias_attr=False,
                     act='relu')
        self.embedding = Embedding(
406
            [Config.num_classes + 2, Config.word_vector_dim],
H
Hongyu Liu 已提交
407 408
            dtype='float32')
        self.gru_decoder_with_attention = GRUDecoderWithAttention(
409
            Config.decoder_size, Config.num_classes)
H
Hongyu Liu 已提交
410 411 412 413 414 415 416 417 418 419 420


    def forward(self, inputs, label_in):
        gru_backward, encoded_vector, encoded_proj = self.encoder_net(inputs)
        backward_first = fluid.layers.slice(
            gru_backward, axes=[1], starts=[0], ends=[1])
        backward_first = fluid.layers.reshape(
            backward_first, [-1, backward_first.shape[2]], inplace=False)

        decoder_boot = self.fc(backward_first)

421
        label_in = fluid.layers.reshape(label_in, [-1], inplace=False)
H
Hongyu Liu 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        trg_embedding = self.embedding(label_in)

        trg_embedding = fluid.layers.reshape(
            trg_embedding, [Config.batch_size, -1, trg_embedding.shape[1]],
            inplace=False)

        prediction = self.gru_decoder_with_attention(
            trg_embedding, encoded_vector, encoded_proj, decoder_boot)

        return prediction


def train(args):

    with fluid.dygraph.guard():
        backward_strategy = fluid.dygraph.BackwardStrategy()
        backward_strategy.sort_sum_gradient = True
439
        ocr_attention = OCRAttention()
H
Hongyu Liu 已提交
440 441 442 443 444 445

        if Config.learning_rate_decay == "piecewise_decay":
            learning_rate = fluid.layers.piecewise_decay(
                [50000], [Config.LR, Config.LR * 0.01])
        else:
            learning_rate = Config.LR
446
        optimizer = fluid.optimizer.Adam(learning_rate=0.001, parameter_list=ocr_attention.parameters())
H
Hongyu Liu 已提交
447 448 449 450
        dy_param_init_value = {}

        grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(5.0 )

H
Hongyu Liu 已提交
451
        train_reader = data_reader.data_reader(
H
Hongyu Liu 已提交
452 453 454
            Config.batch_size,
            cycle=args.total_step > 0,
            shuffle=True,
H
Hongyu Liu 已提交
455
            data_type='train')
H
Hongyu Liu 已提交
456 457 458

        infer_image= './data/data/test_images/'
        infer_files = './data/data/test.list'
H
Hongyu Liu 已提交
459
        test_reader = data_reader.data_reader(
H
Hongyu Liu 已提交
460 461
                Config.batch_size,
                cycle=False,
H
Hongyu Liu 已提交
462
                data_type="test")
H
Hongyu Liu 已提交
463 464 465 466 467 468 469 470 471 472 473
        def eval():
            ocr_attention.eval()
            total_loss = 0.0
            total_step = 0.0
            equal_size = 0
            for data in test_reader():
                data_dict = get_attention_feeder_data(data)

                label_in = to_variable(data_dict["label_in"])
                label_out = to_variable(data_dict["label_out"])

474
                label_out.stop_gradient = True
H
Hongyu Liu 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

                img = to_variable(data_dict["pixel"])

                prediction = ocr_attention(img, label_in)
                prediction = fluid.layers.reshape( prediction, [label_out.shape[0] * label_out.shape[1], -1], inplace=False)

                score, topk = layers.topk( prediction, 1)

                seq = topk.numpy()

                seq = seq.reshape( ( args.batch_size, -1))

                mask = data_dict['mask'].reshape( (args.batch_size, -1))
                seq_len = np.sum( mask, -1)

                trans_ref = data_dict["label_out"].reshape( (args.batch_size, -1))
                for i in range( args.batch_size ):
                    length = int(seq_len[i] -1 )
                    trans = seq[i][:length - 1]
                    ref = trans_ref[i][ : length - 1]
                    if np.array_equal( trans, ref ):
                        equal_size += 1

                total_step += args.batch_size
            print( "eval cost", equal_size / total_step )

        total_step = 0
        epoch_num = 20
        for epoch in range(epoch_num):
            batch_id = 0

            total_loss = 0.0
            for data in train_reader():

                total_step += 1
                data_dict = get_attention_feeder_data(data)

                label_in = to_variable(data_dict["label_in"])
                label_out = to_variable(data_dict["label_out"])

515
                label_out.stop_gradient = True
H
Hongyu Liu 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

                img = to_variable(data_dict["pixel"])

                prediction = ocr_attention(img, label_in)
                prediction = fluid.layers.reshape( prediction, [label_out.shape[0] * label_out.shape[1], -1], inplace=False)
                label_out = fluid.layers.reshape(label_out, [-1, 1], inplace=False)
                loss = fluid.layers.cross_entropy(
                    input=prediction, label=label_out)

                mask = to_variable(data_dict["mask"])

                loss = layers.elementwise_mul( loss, mask, axis=0)
                avg_loss = fluid.layers.reduce_sum(loss)

                total_loss += avg_loss.numpy()
                avg_loss.backward()
                optimizer.minimize(avg_loss, grad_clip=grad_clip)
                ocr_attention.clear_gradients()

                if batch_id > 0 and batch_id % 1000 == 0:
                    print("epoch: {}, batch_id: {}, loss {}".format(epoch, batch_id, total_loss / args.batch_size / 1000))

                    total_loss = 0.0

                if total_step > 0 and total_step % 2000 == 0:
                    ocr_attention.eval()
                    eval()
                    ocr_attention.train()

                batch_id +=1






if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)
    if args.profile:
        if args.use_gpu:
            with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
                train(args)
        else:
            with profiler.profiler("CPU", sorted_key='total') as cpuprof:
                train(args)
    else:
        train(args)