optimizer.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.initializer import init_on_cpu
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter


def cosine_decay(learning_rate, step_each_epoch, epochs=120):
    """Applies cosine decay to the learning rate.
    lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
    """
    global_step = _decay_step_counter()

    with init_on_cpu():
        epoch = ops.floor(global_step / step_each_epoch)
        decayed_lr = learning_rate * \
                     (ops.cos(epoch * (math.pi / epochs)) + 1)/2
    return decayed_lr


def cosine_decay_with_warmup(learning_rate, step_each_epoch, epochs=120):
    """Applies cosine decay to the learning rate.
    lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
    decrease lr for every mini-batch and start with warmup.
    """
    global_step = _decay_step_counter()
    lr = fluid.layers.tensor.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    warmup_epoch = fluid.layers.fill_constant(
        shape=[1], dtype='float32', value=float(5), force_cpu=True)

    with init_on_cpu():
        epoch = ops.floor(global_step / step_each_epoch)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(epoch < warmup_epoch):
                decayed_lr = learning_rate * (global_step /
                                              (step_each_epoch * warmup_epoch))
                fluid.layers.tensor.assign(input=decayed_lr, output=lr)
            with switch.default():
                decayed_lr = learning_rate * \
                    (ops.cos((global_step - warmup_epoch * step_each_epoch) * (math.pi / (epochs * step_each_epoch))) + 1)/2
                fluid.layers.tensor.assign(input=decayed_lr, output=lr)
    return lr


def exponential_decay_with_warmup(learning_rate,
                                  step_each_epoch,
                                  decay_epochs,
                                  decay_rate=0.97,
                                  warm_up_epoch=5.0):
    """Applies exponential decay to the learning rate.
    """
    global_step = _decay_step_counter()
    lr = fluid.layers.tensor.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    warmup_epoch = fluid.layers.fill_constant(
        shape=[1], dtype='float32', value=float(warm_up_epoch), force_cpu=True)

    with init_on_cpu():
        epoch = ops.floor(global_step / step_each_epoch)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(epoch < warmup_epoch):
                decayed_lr = learning_rate * (global_step /
                                              (step_each_epoch * warmup_epoch))
                fluid.layers.assign(input=decayed_lr, output=lr)
            with switch.default():
                div_res = (
                    global_step - warmup_epoch * step_each_epoch) / decay_epochs
                div_res = ops.floor(div_res)
                decayed_lr = learning_rate * (decay_rate**div_res)
                fluid.layers.assign(input=decayed_lr, output=lr)

    return lr


def lr_warmup(learning_rate, warmup_steps, start_lr, end_lr):
    """ Applies linear learning rate warmup for distributed training
        Argument learning_rate can be float or a Variable
        lr = lr + (warmup_rate * step / warmup_steps)
    """
    assert (isinstance(end_lr, float))
    assert (isinstance(start_lr, float))
    linear_step = end_lr - start_lr
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate_warmup")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter()

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                decayed_lr = start_lr + linear_step * (global_step /
                                                       warmup_steps)
                fluid.layers.tensor.assign(decayed_lr, lr)
            with switch.default():
                fluid.layers.tensor.assign(learning_rate, lr)

        return lr


class Optimizer(object):
    """A class used to represent several optimizer methods

    Attributes:
        batch_size: batch size on all devices.
        lr: learning rate.
        lr_strategy: learning rate decay strategy.
        l2_decay: l2_decay parameter.
        momentum_rate: momentum rate when using Momentum optimizer.
        step_epochs: piecewise decay steps.
        num_epochs: number of total epochs.

        total_images: total images.
        step: total steps in the an epoch.
        
    """

C
chajchaj 已提交
151 152
    def __init__(self, args, parameter_list):
        self.parameter_list = parameter_list
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        self.batch_size = args.batch_size
        self.lr = args.lr
        self.lr_strategy = args.lr_strategy
        self.l2_decay = args.l2_decay
        self.momentum_rate = args.momentum_rate
        self.step_epochs = args.step_epochs
        self.num_epochs = args.num_epochs
        self.warm_up_epochs = args.warm_up_epochs
        self.decay_epochs = args.decay_epochs
        self.decay_rate = args.decay_rate
        self.total_images = args.total_images

        self.step = int(math.ceil(float(self.total_images) / self.batch_size))

    def piecewise_decay(self):
        """piecewise decay with Momentum optimizer

            Returns:
            a piecewise_decay optimizer
        """
        bd = [self.step * e for e in self.step_epochs]
        lr = [self.lr * (0.1**i) for i in range(len(bd) + 1)]
        learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=self.momentum_rate,
C
chajchaj 已提交
179 180
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            parameter_list=self.parameter_list)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        return optimizer

    def cosine_decay(self):
        """cosine decay with Momentum optimizer

        Returns:
            a cosine_decay optimizer
        """

        learning_rate = fluid.layers.cosine_decay(
            learning_rate=self.lr,
            step_each_epoch=self.step,
            epochs=self.num_epochs)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=self.momentum_rate,
C
chajchaj 已提交
197 198
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            parameter_list=self.parameter_list)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        return optimizer

    def cosine_decay_warmup(self):
        """cosine decay with warmup

        Returns:
            a cosine_decay_with_warmup optimizer
        """

        learning_rate = cosine_decay_with_warmup(
            learning_rate=self.lr,
            step_each_epoch=self.step,
            epochs=self.num_epochs)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=self.momentum_rate,
C
chajchaj 已提交
215 216
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            parameter_list=self.parameter_list)
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        return optimizer

    def exponential_decay_warmup(self):
        """exponential decay with warmup

        Returns:
            a exponential_decay_with_warmup optimizer
        """

        learning_rate = exponential_decay_with_warmup(
            learning_rate=self.lr,
            step_each_epoch=self.step,
            decay_epochs=self.step * self.decay_epochs,
            decay_rate=self.decay_rate,
            warm_up_epoch=self.warm_up_epochs)
        optimizer = fluid.optimizer.RMSProp(
            learning_rate=learning_rate,
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            momentum=self.momentum_rate,
            rho=0.9,
C
chajchaj 已提交
237 238
            epsilon=0.001,
            parameter_list=self.parameter_list)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        return optimizer

    def linear_decay(self):
        """linear decay with Momentum optimizer

        Returns:
            a linear_decay optimizer
        """

        end_lr = 0
        learning_rate = fluid.layers.polynomial_decay(
            self.lr, self.step, end_lr, power=1)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=learning_rate,
            momentum=self.momentum_rate,
C
chajchaj 已提交
254 255
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            parameter_list=self.parameter_list)
256 257 258 259 260 261 262 263 264 265

        return optimizer

    def adam_decay(self):
        """Adam optimizer

        Returns: 
            an adam_decay optimizer
        """

C
chajchaj 已提交
266 267
        return fluid.optimizer.Adam(
            learning_rate=self.lr, parameter_list=self.parameter_list)
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    def cosine_decay_RMSProp(self):
        """cosine decay with RMSProp optimizer

        Returns: 
            an cosine_decay_RMSProp optimizer
        """

        learning_rate = fluid.layers.cosine_decay(
            learning_rate=self.lr,
            step_each_epoch=self.step,
            epochs=self.num_epochs)
        optimizer = fluid.optimizer.RMSProp(
            learning_rate=learning_rate,
            momentum=self.momentum_rate,
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            # Apply epsilon=1 on ImageNet dataset.
C
chajchaj 已提交
285 286
            epsilon=1,
            parameter_list=self.parameter_list)
287 288 289 290 291 292 293 294 295 296 297 298
        return optimizer

    def default_decay(self):
        """default decay

        Returns:
            default decay optimizer
        """

        optimizer = fluid.optimizer.Momentum(
            learning_rate=self.lr,
            momentum=self.momentum_rate,
C
chajchaj 已提交
299 300
            regularization=fluid.regularizer.L2Decay(self.l2_decay),
            parameter_list=self.parameter_list)
301 302 303
        return optimizer


C
chajchaj 已提交
304 305
def create_optimizer(args, parameter_list):
    Opt = Optimizer(args, parameter_list)
306 307 308
    optimizer = getattr(Opt, args.lr_strategy)()

    return optimizer