train.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
from __future__ import print_function
16 17
import argparse
import ast
M
minqiyang 已提交
18
import numpy as np
19 20
from PIL import Image
import os
M
minqiyang 已提交
21 22
import paddle
import paddle.fluid as fluid
23
from paddle.fluid.optimizer import AdamOptimizer
S
songyouwei 已提交
24
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
M
minqiyang 已提交
25 26 27
from paddle.fluid.dygraph.base import to_variable


28 29 30 31 32 33
def parse_args():
    parser = argparse.ArgumentParser("Training for Mnist.")
    parser.add_argument(
        "--use_data_parallel",
        type=ast.literal_eval,
        default=False,
C
chengduo 已提交
34 35
        help="The flag indicating whether to use data parallel mode to train the model."
    )
D
Divano 已提交
36 37
    parser.add_argument("-e", "--epoch", default=5, type=int, help="set epoch")
    parser.add_argument("--ce", action="store_true", help="run ce")
38 39 40 41
    args = parser.parse_args()
    return args


M
minqiyang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
S
songyouwei 已提交
60
        super(SimpleImgConvPool, self).__init__()
M
minqiyang 已提交
61 62

        self._conv2d = Conv2D(
S
songyouwei 已提交
63
            num_channels=num_channels,
M
minqiyang 已提交
64 65 66 67 68 69 70 71
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
D
Divano 已提交
72
            act=act,
M
minqiyang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
S
songyouwei 已提交
90 91
    def __init__(self):
        super(MNIST, self).__init__()
M
minqiyang 已提交
92 93

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
S
songyouwei 已提交
94
            1, 20, 5, 2, 2, act="relu")
M
minqiyang 已提交
95 96

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
S
songyouwei 已提交
97
            20, 50, 5, 2, 2, act="relu")
M
minqiyang 已提交
98

S
songyouwei 已提交
99
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
100
        SIZE = 10
S
songyouwei 已提交
101 102
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
        self._fc = Linear(self.pool_2_shape, 10,
M
minqiyang 已提交
103 104 105 106 107
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

108
    def forward(self, inputs, label=None):
M
minqiyang 已提交
109 110
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
S
songyouwei 已提交
111
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
112
        x = self._fc(x)
113 114 115 116 117 118 119
        if label is not None:
            acc = fluid.layers.accuracy(input=x, label=label)
            return x, acc
        else:
            return x


120
def test_mnist(reader, model, batch_size):
121 122 123
    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(reader()):
124 125
        dy_x_data = np.array([x[0].reshape(1, 28, 28)
                              for x in data]).astype('float32')
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        y_data = np.array(
            [x[1] for x in data]).astype('int64').reshape(batch_size, 1)

        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True
        prediction, acc = model(img, label)
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_loss = fluid.layers.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))

        # get test acc and loss
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    return avg_loss_val_mean, acc_val_mean
M
minqiyang 已提交
143 144


145
def inference_mnist():
C
chengduo 已提交
146 147 148
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
S
songyouwei 已提交
149
        mnist_infer = MNIST()
150
        # load checkpoint
151 152
        model_dict, _ = fluid.load_dygraph("save_temp")
        mnist_infer.set_dict(model_dict)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        print("checkpoint loaded")

        # start evaluate mode
        mnist_infer.eval()

        def load_image(file):
            im = Image.open(file).convert('L')
            im = im.resize((28, 28), Image.ANTIALIAS)
            im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
            im = im / 255.0 * 2.0 - 1.0
            return im

        cur_dir = os.path.dirname(os.path.realpath(__file__))
        tensor_img = load_image(cur_dir + '/image/infer_3.png')

        results = mnist_infer(to_variable(tensor_img))
        lab = np.argsort(results.numpy())
        print("Inference result of image/infer_3.png is: %d" % lab[0][-1])


def train_mnist(args):
D
Divano 已提交
174
    epoch_num = args.epoch
175
    BATCH_SIZE = 64
M
minqiyang 已提交
176

177 178 179
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
D
Divano 已提交
180 181 182 183 184 185 186
        if args.ce:
            print("ce mode")
            seed = 33
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

187 188
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()
S
songyouwei 已提交
189
        mnist = MNIST()
190
        adam = AdamOptimizer(learning_rate=0.001, parameter_list=mnist.parameters())
191 192 193
        if args.use_data_parallel:
            mnist = fluid.dygraph.parallel.DataParallel(mnist, strategy)

194 195
        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
196
        if args.use_data_parallel:
197 198
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)
199

200 201
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=BATCH_SIZE, drop_last=True)
202

M
minqiyang 已提交
203 204
        for epoch in range(epoch_num):
            for batch_id, data in enumerate(train_reader()):
205 206
                dy_x_data = np.array([x[0].reshape(1, 28, 28)
                                      for x in data]).astype('float32')
M
minqiyang 已提交
207
                y_data = np.array(
208
                    [x[1] for x in data]).astype('int64').reshape(-1, 1)
M
minqiyang 已提交
209 210 211 212 213

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label.stop_gradient = True

214 215
                cost, acc = mnist(img, label)

M
minqiyang 已提交
216 217
                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)
218 219 220 221 222 223 224 225

                if args.use_data_parallel:
                    avg_loss = mnist.scale_loss(avg_loss)
                    avg_loss.backward()
                    mnist.apply_collective_grads()
                else:
                    avg_loss.backward()

226 227
                adam.minimize(avg_loss)
                # save checkpoint
M
minqiyang 已提交
228
                mnist.clear_gradients()
229
                if batch_id % 100 == 0:
230 231
                    print("Loss at epoch {} step {}: {:}".format(
                        epoch, batch_id, avg_loss.numpy()))
232 233

            mnist.eval()
234
            test_cost, test_acc = test_mnist(test_reader, mnist, BATCH_SIZE)
235
            mnist.train()
D
Divano 已提交
236 237 238
            if args.ce:
                print("kpis\ttest_acc\t%s" % test_acc)
                print("kpis\ttest_cost\t%s" % test_cost)
239 240
            print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(
                epoch, test_cost, test_acc))
M
minqiyang 已提交
241

C
chengduo 已提交
242 243 244 245
        save_parameters = (not args.use_data_parallel) or (
            args.use_data_parallel and
            fluid.dygraph.parallel.Env().local_rank == 0)
        if save_parameters:
246
            fluid.save_dygraph(mnist.state_dict(), "save_temp")
H
hong 已提交
247
            
C
chengduo 已提交
248
            print("checkpoint saved")
249

H
hong 已提交
250
            inference_mnist()
M
minqiyang 已提交
251 252 253


if __name__ == '__main__':
254 255
    args = parse_args()
    train_mnist(args)