run_classifier.py 20.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Y
Yibing Liu 已提交
20
import six
Y
Yibing Liu 已提交
21
import sys
Y
Yibing Liu 已提交
22 23 24
if six.PY2:
    reload(sys)
    sys.setdefaultencoding('utf8')
Y
Yibing Liu 已提交
25

Y
Yibing Liu 已提交
26 27 28 29 30 31 32 33 34
import os
import time
import argparse
import numpy as np
import subprocess
import multiprocessing

import paddle
import paddle.fluid as fluid
H
hysunflower 已提交
35
from paddle.fluid import profiler
Y
Yibing Liu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

import reader.cls as reader
from model.bert import BertConfig
from model.classifier import create_model
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_pretraining_params, init_checkpoint
from utils.cards import get_cards
import dist_utils

num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",         str,  None,           "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints",  "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    3,       "Number of epoches for fine-tuning.")
train_g.add_arg("learning_rate",     float,  5e-5,    "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
69 70
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling",           float,  2**32,
Y
Yibing Liu 已提交
71
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
72 73 74 75 76 77 78
train_g.add_arg("incr_every_n_steps",          int,    1000,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")
Y
Yibing Liu 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",      str,  None,  "Path to training data.")
data_g.add_arg("vocab_path",    str,  None,  "Vocabulary path.")
data_g.add_arg("max_seq_len",   int,  512,   "Number of words of the longest seqence.")
data_g.add_arg("batch_size",    int,  32,    "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("in_tokens",     bool, False,
              "If set, the batch size will be the maximum number of tokens in one batch. "
              "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
data_g.add_arg("random_seed",   int,  0,     "Random seed.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
H
hysunflower 已提交
97 98 99 100 101 102

# NOTE:profiler args, used for benchmark
run_type_g.add_arg("profiler_path",                str,    './', "the profiler output file path. (used for benchmark)")
run_type_g.add_arg("is_profiler",                  int,    0,     "the profiler switch. (used for benchmark)")
run_type_g.add_arg("max_iter",                     int,    0,     "the max batch nums to train. (used for benchmark)")

Y
Yibing Liu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
run_type_g.add_arg("use_cuda",                     bool,   True,  "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("shuffle",                      bool,   True,  "")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,     "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("task_name",                    str,    None,
                   "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_val",                       bool,   True,  "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test",                      bool,   True,  "Whether to perform evaluation on test data set.")

parser.add_argument("--enable_ce", action='store_true', help="The flag indicating whether to run the task for continuous evaluation.")

args = parser.parse_args()
# yapf: enable.


Y
Yibing Liu 已提交
119 120
def evaluate(exe, test_program, test_data_loader, fetch_list, eval_phase):
    test_data_loader.start()
Y
Yibing Liu 已提交
121 122 123 124 125 126 127 128 129 130
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
Y
Yibing Liu 已提交
131
            test_data_loader.reset()
Y
Yibing Liu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
            break
    time_end = time.time()
    print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
          (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
           np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))

def get_device_num():
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
    if num_trainers > 1 : return 1
    visible_device = os.environ.get('CUDA_VISIBLE_DEVICES', None)
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(['nvidia-smi','-L']).decode().count('\n')
    return device_num

def main(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = get_device_num()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
                                      do_lower_case=args.do_lower_case,
                                      in_tokens=args.in_tokens,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    train_program = fluid.Program()
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed
        train_program.random_seed = args.random_seed

    if args.do_train:
        # NOTE: If num_trainers > 1, the shuffle_seed must be set, because
        # the order of batch data generated by reader
        # must be the same in the respective processes.
        shuffle_seed = 1 if num_trainers > 1 else None
        train_data_generator = processor.data_generator(
            batch_size=args.batch_size,
            phase='train',
            epoch=args.epoch,
            dev_count=dev_count,
            shuffle=args.shuffle,
            shuffle_seed=shuffle_seed)

        num_train_examples = processor.get_num_examples(phase='train')

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
Y
Yibing Liu 已提交
215
                train_data_loader, loss, probs, accuracy, num_seqs = create_model(
Y
Yibing Liu 已提交
216 217 218
                    args,
                    bert_config=bert_config,
                    num_labels=num_labels)
219
                scheduled_lr, loss_scaling = optimization(
Y
Yibing Liu 已提交
220 221 222 223 224 225 226 227 228
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
229 230 231 232 233 234
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    incr_every_n_steps=args.incr_every_n_steps,
                    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                    incr_ratio=args.incr_ratio,
                    decr_ratio=args.decr_ratio)
Y
Yibing Liu 已提交
235

236 237 238 239
    if args.do_val:
        dev_prog = fluid.Program()
        with fluid.program_guard(dev_prog, startup_prog):
            with fluid.unique_name.guard():
Y
Yibing Liu 已提交
240
                dev_data_loader, loss, probs, accuracy, num_seqs = create_model(
241 242 243 244 245
                    args,
                    bert_config=bert_config,
                    num_labels=num_labels)

        dev_prog = dev_prog.clone(for_test=True)
Y
Yibing Liu 已提交
246
        dev_data_loader.set_batch_generator(
247 248 249 250 251 252 253 254
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                dev_count=1,
                                shuffle=False), place)

    if args.do_test:
Y
Yibing Liu 已提交
255 256 257
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
Y
Yibing Liu 已提交
258
                test_data_loader, loss, probs, accuracy, num_seqs = create_model(
Y
Yibing Liu 已提交
259 260 261 262 263
                    args,
                    bert_config=bert_config,
                    num_labels=num_labels)

        test_prog = test_prog.clone(for_test=True)
Y
Yibing Liu 已提交
264
        test_data_loader.set_batch_generator(
265 266 267 268 269 270
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='test',
                                epoch=1,
                                dev_count=1,
                                shuffle=False), place)
Y
Yibing Liu 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = args.use_fast_executor
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope
        build_strategy = fluid.BuildStrategy()

        if args.use_cuda and num_trainers > 1:
            assert shuffle_seed is not None
            dist_utils.prepare_for_multi_process(exe, build_strategy, train_program)
            train_data_generator = fluid.contrib.reader.distributed_batch_reader(
                  train_data_generator)

        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
                 loss_name=loss.name, build_strategy=build_strategy)

Y
Yibing Liu 已提交
317
        train_data_loader.set_batch_generator(train_data_generator, place)
Y
Yibing Liu 已提交
318 319 320


    if args.do_train:
Y
Yibing Liu 已提交
321
        train_data_loader.start()
Y
Yibing Liu 已提交
322 323 324 325 326
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        throughput = []
        ce_info = []
H
hysunflower 已提交
327 328 329

        total_batch_num=0 # used for benchmark

Y
Yibing Liu 已提交
330 331
        while True:
            try:
332
                steps += 1
H
hysunflower 已提交
333 334 335 336 337

                total_batch_num += 1 # used for benchmark
                if args.max_iter and total_batch_num == args.max_iter: # used for benchmark
                    return

Y
Yibing Liu 已提交
338
                if steps % args.skip_steps == 0:
339 340
                    if args.use_fp16:
                        fetch_list = [loss.name, accuracy.name, scheduled_lr.name, num_seqs.name, loss_scaling.name]
Y
Yibing Liu 已提交
341
                    else:
342
                        fetch_list = [loss.name, accuracy.name, scheduled_lr.name, num_seqs.name]
Y
Yibing Liu 已提交
343 344 345 346 347 348
                else:
                    fetch_list = []

                outputs = exe.run(train_compiled_program, fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
349 350
                    if args.use_fp16:
                        np_loss, np_acc, np_lr, np_num_seqs, np_scaling = outputs
Y
Yibing Liu 已提交
351 352 353 354 355 356 357 358
                    else:
                        np_loss, np_acc, np_lr, np_num_seqs = outputs

                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
Y
Yibing Liu 已提交
359
                        verbose = "train data_loader queue size: %d, " % train_data_loader.queue.size(
Y
Yibing Liu 已提交
360
                        )
361 362 363
                        verbose += "learning rate: %f" % np_lr[0]
                        if args.use_fp16:
                            verbose += ", loss scaling: %f" % np_scaling[0]
Y
Yibing Liu 已提交
364 365 366 367 368 369 370
                        print(verbose)

                    current_example, current_epoch = processor.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin

H
hysunflower 已提交
371 372 373 374 375 376 377
                    # profiler tools
                    if args.is_profiler and current_epoch == 0 and steps == args.skip_steps:
                        profiler.start_profiler("All")
                    elif args.is_profiler and current_epoch == 0 and steps == args.skip_steps * 2:
                        profiler.stop_profiler("total", args.profiler_path)
                        return

Y
Yibing Liu 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
                    log_record = "epoch: {}, progress: {}/{}, step: {}, ave loss: {}, ave acc: {}".format(
                           current_epoch, current_example, num_train_examples,
                           steps, np.sum(total_cost) / np.sum(total_num_seqs),
                           np.sum(total_acc) / np.sum(total_num_seqs))
                    ce_info.append([np.sum(total_cost) / np.sum(total_num_seqs), np.sum(total_acc) / np.sum(total_num_seqs), used_time])
                    if steps > 0 :
                        throughput.append( args.skip_steps / used_time)
                        log_record = log_record + ", speed: %f steps/s" % (args.skip_steps / used_time)
                        print(log_record)
                    else:
                        print(log_record)
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    print("Average throughtput: %s" % (np.average(throughput)))
                    throughput = []
                    # evaluate dev set
                    if args.do_val:
Y
Yibing Liu 已提交
402
                        evaluate(exe, dev_prog, dev_data_loader,
Y
Yibing Liu 已提交
403 404 405 406
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "dev")
                    # evaluate test set
                    if args.do_test:
Y
Yibing Liu 已提交
407
                        evaluate(exe, test_prog, test_data_loader,
Y
Yibing Liu 已提交
408 409 410 411 412
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "test")
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
Y
Yibing Liu 已提交
413
                train_data_loader.reset()
Y
Yibing Liu 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
                break
        if args.enable_ce:
            card_num = get_cards()
            ce_cost = 0
            ce_acc = 0
            ce_time = 0
            try:
                ce_cost = ce_info[-2][0]
                ce_acc = ce_info[-2][1]
                ce_time = ce_info[-2][2]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_%s_card%s\t%s" %
                (args.task_name, card_num, ce_time))
            print("kpis\ttrain_cost_%s_card%s\t%f" %
                (args.task_name, card_num, ce_cost))
            print("kpis\ttrain_acc_%s_card%s\t%f" %
                (args.task_name, card_num, ce_acc))


    # final eval on dev set
    if args.do_val:
        print("Final validation result:")
Y
Yibing Liu 已提交
437
        evaluate(exe, dev_prog, dev_data_loader,
Y
Yibing Liu 已提交
438 439 440 441 442
                 [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_test:
        print("Final test result:")
Y
Yibing Liu 已提交
443
        evaluate(exe, test_prog, test_data_loader,
Y
Yibing Liu 已提交
444 445 446 447 448 449 450
                 [loss.name, accuracy.name, num_seqs.name], "test")


if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    main(args)