run_classifier.py 19.2 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Y
Yibing Liu 已提交
20
import six
Y
Yibing Liu 已提交
21
import sys
Y
Yibing Liu 已提交
22 23 24
if six.PY2:
    reload(sys)
    sys.setdefaultencoding('utf8')
Y
Yibing Liu 已提交
25

Y
Yibing Liu 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
import os
import time
import argparse
import numpy as np
import subprocess
import multiprocessing

import paddle
import paddle.fluid as fluid

import reader.cls as reader
from model.bert import BertConfig
from model.classifier import create_model
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_pretraining_params, init_checkpoint
from utils.cards import get_cards
import dist_utils

num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",         str,  None,           "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints",  "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    3,       "Number of epoches for fine-tuning.")
train_g.add_arg("learning_rate",     float,  5e-5,    "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
68 69
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling in mixed precision training.")
train_g.add_arg("init_loss_scaling",           float,  2**32,
Y
Yibing Liu 已提交
70
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
71 72 73 74 75 76 77
train_g.add_arg("incr_every_n_steps",          int,    1000,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")
Y
Yibing Liu 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",      str,  None,  "Path to training data.")
data_g.add_arg("vocab_path",    str,  None,  "Vocabulary path.")
data_g.add_arg("max_seq_len",   int,  512,   "Number of words of the longest seqence.")
data_g.add_arg("batch_size",    int,  32,    "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("in_tokens",     bool, False,
              "If set, the batch size will be the maximum number of tokens in one batch. "
              "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
data_g.add_arg("random_seed",   int,  0,     "Random seed.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda",                     bool,   True,  "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("shuffle",                      bool,   True,  "")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,     "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("task_name",                    str,    None,
                   "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_val",                       bool,   True,  "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test",                      bool,   True,  "Whether to perform evaluation on test data set.")

parser.add_argument("--enable_ce", action='store_true', help="The flag indicating whether to run the task for continuous evaluation.")

args = parser.parse_args()
# yapf: enable.


Y
Yibing Liu 已提交
112 113
def evaluate(exe, test_program, test_data_loader, fetch_list, eval_phase):
    test_data_loader.start()
Y
Yibing Liu 已提交
114 115 116 117 118 119 120 121 122 123
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
Y
Yibing Liu 已提交
124
            test_data_loader.reset()
Y
Yibing Liu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
            break
    time_end = time.time()
    print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
          (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
           np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))

def get_device_num():
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
    if num_trainers > 1 : return 1
    visible_device = os.environ.get('CUDA_VISIBLE_DEVICES', None)
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(['nvidia-smi','-L']).decode().count('\n')
    return device_num

def main(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = get_device_num()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
                                      do_lower_case=args.do_lower_case,
                                      in_tokens=args.in_tokens,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    train_program = fluid.Program()
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed
        train_program.random_seed = args.random_seed

    if args.do_train:
        # NOTE: If num_trainers > 1, the shuffle_seed must be set, because
        # the order of batch data generated by reader
        # must be the same in the respective processes.
        shuffle_seed = 1 if num_trainers > 1 else None
        train_data_generator = processor.data_generator(
            batch_size=args.batch_size,
            phase='train',
            epoch=args.epoch,
            dev_count=dev_count,
            shuffle=args.shuffle,
            shuffle_seed=shuffle_seed)

        num_train_examples = processor.get_num_examples(phase='train')

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
Y
Yibing Liu 已提交
208
                train_data_loader, loss, probs, accuracy, num_seqs = create_model(
Y
Yibing Liu 已提交
209 210 211
                    args,
                    bert_config=bert_config,
                    num_labels=num_labels)
212
                scheduled_lr, loss_scaling = optimization(
Y
Yibing Liu 已提交
213 214 215 216 217 218 219 220 221
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
222 223 224 225 226 227
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    incr_every_n_steps=args.incr_every_n_steps,
                    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                    incr_ratio=args.incr_ratio,
                    decr_ratio=args.decr_ratio)
Y
Yibing Liu 已提交
228

229 230 231 232
    if args.do_val:
        dev_prog = fluid.Program()
        with fluid.program_guard(dev_prog, startup_prog):
            with fluid.unique_name.guard():
Y
Yibing Liu 已提交
233
                dev_data_loader, loss, probs, accuracy, num_seqs = create_model(
234 235 236 237 238
                    args,
                    bert_config=bert_config,
                    num_labels=num_labels)

        dev_prog = dev_prog.clone(for_test=True)
Y
Yibing Liu 已提交
239
        dev_data_loader.set_batch_generator(
240 241 242 243 244 245 246 247
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                dev_count=1,
                                shuffle=False), place)

    if args.do_test:
Y
Yibing Liu 已提交
248 249 250
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
Y
Yibing Liu 已提交
251
                test_data_loader, loss, probs, accuracy, num_seqs = create_model(
Y
Yibing Liu 已提交
252 253 254 255 256
                    args,
                    bert_config=bert_config,
                    num_labels=num_labels)

        test_prog = test_prog.clone(for_test=True)
Y
Yibing Liu 已提交
257
        test_data_loader.set_batch_generator(
258 259 260 261 262 263
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='test',
                                epoch=1,
                                dev_count=1,
                                shuffle=False), place)
Y
Yibing Liu 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = args.use_fast_executor
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope
        build_strategy = fluid.BuildStrategy()

        if args.use_cuda and num_trainers > 1:
            assert shuffle_seed is not None
            dist_utils.prepare_for_multi_process(exe, build_strategy, train_program)
            train_data_generator = fluid.contrib.reader.distributed_batch_reader(
                  train_data_generator)

        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
                 loss_name=loss.name, build_strategy=build_strategy)

Y
Yibing Liu 已提交
310
        train_data_loader.set_batch_generator(train_data_generator, place)
Y
Yibing Liu 已提交
311 312 313


    if args.do_train:
Y
Yibing Liu 已提交
314
        train_data_loader.start()
Y
Yibing Liu 已提交
315 316 317 318 319 320 321
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        throughput = []
        ce_info = []
        while True:
            try:
322
                steps += 1
Y
Yibing Liu 已提交
323
                if steps % args.skip_steps == 0:
324 325
                    if args.use_fp16:
                        fetch_list = [loss.name, accuracy.name, scheduled_lr.name, num_seqs.name, loss_scaling.name]
Y
Yibing Liu 已提交
326
                    else:
327
                        fetch_list = [loss.name, accuracy.name, scheduled_lr.name, num_seqs.name]
Y
Yibing Liu 已提交
328 329 330 331 332 333
                else:
                    fetch_list = []

                outputs = exe.run(train_compiled_program, fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
334 335
                    if args.use_fp16:
                        np_loss, np_acc, np_lr, np_num_seqs, np_scaling = outputs
Y
Yibing Liu 已提交
336 337 338 339 340 341 342 343
                    else:
                        np_loss, np_acc, np_lr, np_num_seqs = outputs

                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
Y
Yibing Liu 已提交
344
                        verbose = "train data_loader queue size: %d, " % train_data_loader.queue.size(
Y
Yibing Liu 已提交
345
                        )
346 347 348
                        verbose += "learning rate: %f" % np_lr[0]
                        if args.use_fp16:
                            verbose += ", loss scaling: %f" % np_scaling[0]
Y
Yibing Liu 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
                        print(verbose)

                    current_example, current_epoch = processor.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin

                    log_record = "epoch: {}, progress: {}/{}, step: {}, ave loss: {}, ave acc: {}".format(
                           current_epoch, current_example, num_train_examples,
                           steps, np.sum(total_cost) / np.sum(total_num_seqs),
                           np.sum(total_acc) / np.sum(total_num_seqs))
                    ce_info.append([np.sum(total_cost) / np.sum(total_num_seqs), np.sum(total_acc) / np.sum(total_num_seqs), used_time])
                    if steps > 0 :
                        throughput.append( args.skip_steps / used_time)
                        log_record = log_record + ", speed: %f steps/s" % (args.skip_steps / used_time)
                        print(log_record)
                    else:
                        print(log_record)
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    print("Average throughtput: %s" % (np.average(throughput)))
                    throughput = []
                    # evaluate dev set
                    if args.do_val:
Y
Yibing Liu 已提交
380
                        evaluate(exe, dev_prog, dev_data_loader,
Y
Yibing Liu 已提交
381 382 383 384
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "dev")
                    # evaluate test set
                    if args.do_test:
Y
Yibing Liu 已提交
385
                        evaluate(exe, test_prog, test_data_loader,
Y
Yibing Liu 已提交
386 387 388 389 390
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "test")
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
Y
Yibing Liu 已提交
391
                train_data_loader.reset()
Y
Yibing Liu 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
                break
        if args.enable_ce:
            card_num = get_cards()
            ce_cost = 0
            ce_acc = 0
            ce_time = 0
            try:
                ce_cost = ce_info[-2][0]
                ce_acc = ce_info[-2][1]
                ce_time = ce_info[-2][2]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_%s_card%s\t%s" %
                (args.task_name, card_num, ce_time))
            print("kpis\ttrain_cost_%s_card%s\t%f" %
                (args.task_name, card_num, ce_cost))
            print("kpis\ttrain_acc_%s_card%s\t%f" %
                (args.task_name, card_num, ce_acc))


    # final eval on dev set
    if args.do_val:
        print("Final validation result:")
Y
Yibing Liu 已提交
415
        evaluate(exe, dev_prog, dev_data_loader,
Y
Yibing Liu 已提交
416 417 418 419 420
                 [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_test:
        print("Final test result:")
Y
Yibing Liu 已提交
421
        evaluate(exe, test_prog, test_data_loader,
Y
Yibing Liu 已提交
422 423 424 425 426 427 428
                 [loss.name, accuracy.name, num_seqs.name], "test")


if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    main(args)