DoubleDQN_agent.py 7.4 KB
Newer Older
1 2
#-*- coding: utf-8 -*-

3 4
import math
import numpy as np
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from tqdm import tqdm


class DoubleDQNModel(object):
    def __init__(self, state_dim, action_dim, gamma, hist_len, use_cuda=False):
        self.img_height = state_dim[0]
        self.img_width = state_dim[1]
        self.action_dim = action_dim
        self.gamma = gamma
        self.exploration = 1.1
        self.update_target_steps = 10000 // 4
        self.hist_len = hist_len
        self.use_cuda = use_cuda

        self.global_step = 0
        self._build_net()

    def _get_inputs(self):
        return fluid.layers.data(
                   name='state',
                   shape=[self.hist_len, self.img_height, self.img_width],
                   dtype='float32'), \
               fluid.layers.data(
                   name='action', shape=[1], dtype='int32'), \
               fluid.layers.data(
                   name='reward', shape=[], dtype='float32'), \
               fluid.layers.data(
                   name='next_s',
                   shape=[self.hist_len, self.img_height, self.img_width],
                   dtype='float32'), \
               fluid.layers.data(
                   name='isOver', shape=[], dtype='bool')

    def _build_net(self):
41 42 43
        self.predict_program = fluid.Program()
        self.train_program = fluid.Program()
        self._sync_program = fluid.Program()
44

45 46 47
        with fluid.program_guard(self.predict_program):
            state, action, reward, next_s, isOver = self._get_inputs()
            self.pred_value = self.get_DQN_prediction(state)
48

49 50 51
        with fluid.program_guard(self.train_program):
            state, action, reward, next_s, isOver = self._get_inputs()
            pred_value = self.get_DQN_prediction(state)
52

53
            reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
54

55 56
            action_onehot = fluid.layers.one_hot(action, self.action_dim)
            action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
57

58 59
            pred_action_value = fluid.layers.reduce_sum(
                fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
60

61
            targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
62

63
            next_s_predcit_value = self.get_DQN_prediction(next_s)
Z
zenghsh3 已提交
64 65
            greedy_action = fluid.layers.argmax(next_s_predcit_value, axis=1)
            greedy_action = fluid.layers.unsqueeze(greedy_action, axes=[1])
66

67 68 69 70 71
            predict_onehot = fluid.layers.one_hot(greedy_action, self.action_dim)
            best_v = fluid.layers.reduce_sum(
                fluid.layers.elementwise_mul(predict_onehot, targetQ_predict_value),
                dim=1)
            best_v.stop_gradient = True
72

73 74 75 76
            target = reward + (1.0 - fluid.layers.cast(
                isOver, dtype='float32')) * self.gamma * best_v
            cost = fluid.layers.square_error_cost(pred_action_value, target)
            cost = fluid.layers.reduce_mean(cost)
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
            optimizer.minimize(cost)

        vars = list(self.train_program.list_vars())
        policy_vars = list(filter(
            lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
        target_vars = list(filter(
            lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
        policy_vars.sort(key=lambda x: x.name)
        target_vars.sort(key=lambda x: x.name)
        
        with fluid.program_guard(self._sync_program):
            sync_ops = []
            for i, var in enumerate(policy_vars):
                sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
                sync_ops.append(sync_op)
94 95 96 97 98 99 100 101 102 103 104 105 106 107

        # fluid exe
        place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
        self.exe = fluid.Executor(place)
        self.exe.run(fluid.default_startup_program())

    def get_DQN_prediction(self, image, target=False):
        image = image / 255.0

        variable_field = 'target' if target else 'policy'

        conv1 = fluid.layers.conv2d(
            input=image,
            num_filters=32,
Z
zenghsh3 已提交
108 109 110
            filter_size=5,
            stride=1,
            padding=2,
111 112 113 114
            act='relu',
            param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
            bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
        max_pool1 = fluid.layers.pool2d(
Z
zenghsh3 已提交
115
            input=conv1, pool_size=2, pool_stride=2, pool_type='max')
116 117 118 119

        conv2 = fluid.layers.conv2d(
            input=max_pool1,
            num_filters=32,
Z
zenghsh3 已提交
120 121 122
            filter_size=5,
            stride=1,
            padding=2,
123 124 125 126
            act='relu',
            param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
            bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
        max_pool2 = fluid.layers.pool2d(
Z
zenghsh3 已提交
127
            input=conv2, pool_size=2, pool_stride=2, pool_type='max')
128 129 130 131

        conv3 = fluid.layers.conv2d(
            input=max_pool2,
            num_filters=64,
Z
zenghsh3 已提交
132 133 134
            filter_size=4,
            stride=1,
            padding=1,
135 136 137 138
            act='relu',
            param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
            bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
        max_pool3 = fluid.layers.pool2d(
Z
zenghsh3 已提交
139
            input=conv3, pool_size=2, pool_stride=2, pool_type='max')
140 141 142 143

        conv4 = fluid.layers.conv2d(
            input=max_pool3,
            num_filters=64,
Z
zenghsh3 已提交
144 145 146
            filter_size=3,
            stride=1,
            padding=1,
147 148 149 150
            act='relu',
            param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
            bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))

Z
zenghsh3 已提交
151
        flatten = fluid.layers.flatten(conv4, axis=1)
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        out = fluid.layers.fc(
            input=flatten,
            size=self.action_dim,
            param_attr=ParamAttr(name='{}_fc1'.format(variable_field)),
            bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field)))
        return out


    def act(self, state, train_or_test):
        sample = np.random.random()
        if train_or_test == 'train' and sample < self.exploration:
            act = np.random.randint(self.action_dim)
        else:
            if np.random.random() < 0.01:
                act = np.random.randint(self.action_dim)
            else:
                state = np.expand_dims(state, axis=0)
                pred_Q = self.exe.run(self.predict_program,
                                      feed={'state': state.astype('float32')},
                                      fetch_list=[self.pred_value])[0]
                pred_Q = np.squeeze(pred_Q, axis=0)
                act = np.argmax(pred_Q)
        if train_or_test == 'train':
            self.exploration = max(0.1, self.exploration - 1e-6)
        return act

    def train(self, state, action, reward, next_state, isOver):
        if self.global_step % self.update_target_steps == 0:
            self.sync_target_network()
        self.global_step += 1

        action = np.expand_dims(action, -1)
        self.exe.run(self.train_program,
                     feed={
                         'state': state.astype('float32'),
                         'action': action.astype('int32'),
                         'reward': reward,
                         'next_s': next_state.astype('float32'),
                         'isOver': isOver
                     })

    def sync_target_network(self):
        self.exe.run(self._sync_program)