train.py 9.0 KB
Newer Older
1
import os
2
import time
3
import numpy as np
Y
ying 已提交
4

5
import paddle
L
Luo Tao 已提交
6
import paddle.fluid as fluid
Y
ying 已提交
7

8
from model import transformer, position_encoding_init
9
from optim import LearningRateScheduler
10 11
from config import TrainTaskConfig, ModelHyperParams, pos_enc_param_names, \
        encoder_input_data_names, decoder_input_data_names, label_data_names
12 13


14 15 16 17 18 19 20
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   return_pos=True,
                   return_attn_bias=True,
                   return_max_len=True):
21 22
    """
    Pad the instances to the max sequence length in batch, and generate the
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if return_pos:
        inst_pos = np.array([[
            pos_i + 1 if w_i != pad_idx else 0 for pos_i, w_i in enumerate(inst)
        ] for inst in inst_data])

        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
                        max_length, n_head):
    """
    Put all padded data needed by training into a dict.
63
    """
64 65 66 67
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
68 69
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
G
guosheng 已提交
70 71 72 73 74 75 76 77 78 79 80 81
    src_slf_attn_pre_softmax_shape = np.array(
        [-1, src_slf_attn_bias.shape[-1]], dtype="int32")
    src_slf_attn_post_softmax_shape = np.array(
        src_slf_attn_bias.shape, dtype="int32")
    trg_slf_attn_pre_softmax_shape = np.array(
        [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
    trg_slf_attn_post_softmax_shape = np.array(
        trg_slf_attn_bias.shape, dtype="int32")
    trg_src_attn_pre_softmax_shape = np.array(
        [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
    trg_src_attn_post_softmax_shape = np.array(
        trg_src_attn_bias.shape, dtype="int32")
82 83
    lbl_word = pad_batch_data([inst[2] for inst in insts], trg_pad_idx, n_head,
                              False, False, False, False)
84
    lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
85 86
    input_dict = dict(
        zip(input_data_names, [
G
guosheng 已提交
87 88 89 90 91 92
            src_word, src_pos, src_slf_attn_bias,
            src_slf_attn_pre_softmax_shape, src_slf_attn_post_softmax_shape,
            trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias,
            trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
            trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape,
            lbl_word, lbl_weight
93
        ]))
94 95 96 97
    return input_dict


def main():
98 99 100
    place = fluid.CUDAPlace(0) if TrainTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

G
guosheng 已提交
101
    sum_cost, avg_cost, predict = transformer(
Y
ying 已提交
102 103 104 105 106 107 108
        ModelHyperParams.src_vocab_size + 1,
        ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer, ModelHyperParams.n_head,
        ModelHyperParams.d_key, ModelHyperParams.d_value,
        ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
        ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)
109

110 111 112
    lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                         TrainTaskConfig.warmup_steps, place,
                                         TrainTaskConfig.learning_rate)
113
    optimizer = fluid.optimizer.Adam(
114
        learning_rate=lr_scheduler.learning_rate,
Y
ying 已提交
115 116 117
        beta1=TrainTaskConfig.beta1,
        beta2=TrainTaskConfig.beta2,
        epsilon=TrainTaskConfig.eps)
118
    optimizer.minimize(avg_cost if TrainTaskConfig.use_avg_cost else sum_cost)
119 120 121

    train_data = paddle.batch(
        paddle.reader.shuffle(
Y
ying 已提交
122 123
            paddle.dataset.wmt16.train(ModelHyperParams.src_vocab_size,
                                       ModelHyperParams.trg_vocab_size),
G
guosheng 已提交
124
            buf_size=100000),
Y
ying 已提交
125
        batch_size=TrainTaskConfig.batch_size)
126

127 128 129
    # Program to do validation.
    test_program = fluid.default_main_program().clone()
    with fluid.program_guard(test_program):
G
guosheng 已提交
130
        test_program = fluid.io.get_inference_program([avg_cost])
131 132 133 134 135 136
    val_data = paddle.batch(
        paddle.dataset.wmt16.validation(ModelHyperParams.src_vocab_size,
                                        ModelHyperParams.trg_vocab_size),
        batch_size=TrainTaskConfig.batch_size)

    def test(exe):
G
guosheng 已提交
137 138
        test_sum_costs = []
        test_avg_costs = []
139 140 141 142 143 144 145 146
        for batch_id, data in enumerate(val_data()):
            if len(data) != TrainTaskConfig.batch_size:
                continue
            data_input = prepare_batch_input(
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
                ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
                ModelHyperParams.n_head)
G
guosheng 已提交
147 148 149 150 151
            test_sum_cost, test_avg_cost = exe.run(
                test_program, feed=data_input, fetch_list=[sum_cost, avg_cost])
            test_sum_costs.append(test_sum_cost)
            test_avg_costs.append(test_avg_cost)
        return np.mean(test_sum_costs), np.mean(test_avg_costs)
152

153 154 155 156 157 158
    # Initialize the parameters.
    exe.run(fluid.framework.default_startup_program())
    for pos_enc_param_name in pos_enc_param_names:
        pos_enc_param = fluid.global_scope().find_var(
            pos_enc_param_name).get_tensor()
        pos_enc_param.set(
Y
ying 已提交
159 160 161 162
            position_encoding_init(ModelHyperParams.max_length + 1,
                                   ModelHyperParams.d_model), place)

    for pass_id in xrange(TrainTaskConfig.pass_num):
163
        pass_start_time = time.time()
Y
ying 已提交
164
        for batch_id, data in enumerate(train_data()):
165 166 167 168
            # The current program desc is coupled with batch_size, thus all
            # mini-batches must have the same number of instances currently.
            if len(data) != TrainTaskConfig.batch_size:
                continue
Y
ying 已提交
169
            data_input = prepare_batch_input(
170 171
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
Y
ying 已提交
172
                ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
173
                ModelHyperParams.n_head)
174
            lr_scheduler.update_learning_rate(data_input)
175 176
            outs = exe.run(fluid.framework.default_main_program(),
                           feed=data_input,
G
guosheng 已提交
177
                           fetch_list=[sum_cost, avg_cost],
X
Xin Pan 已提交
178
                           use_program_cache=True)
G
guosheng 已提交
179
            sum_cost_val, avg_cost_val = np.array(outs[0]), np.array(outs[1])
180
            print("epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f" %
181 182
                  (pass_id, batch_id, sum_cost_val, avg_cost_val,
                   np.exp([min(avg_cost_val[0], 100)])))
183
        # Validate and save the model for inference.
G
guosheng 已提交
184
        val_sum_cost, val_avg_cost = test(exe)
185 186
        pass_end_time = time.time()
        time_consumed = pass_end_time - pass_start_time
187 188 189
        print("epoch: %d, val sum loss: %f, val avg loss: %f, val ppl: %f, "
              "consumed %fs" %
              (pass_id, val_sum_cost, val_avg_cost,
190
               np.exp([min(val_avg_cost, 100)]), time_consumed))
191 192 193 194 195
        fluid.io.save_inference_model(
            os.path.join(TrainTaskConfig.model_dir,
                         "pass_" + str(pass_id) + ".infer.model"),
            encoder_input_data_names + decoder_input_data_names[:-1],
            [predict], exe)
196 197 198 199


if __name__ == "__main__":
    main()