train.py 5.3 KB
Newer Older
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
D
Dun 已提交
4 5 6 7 8 9 10 11 12 13
import os
os.environ['FLAGS_fraction_of_gpu_memory_to_use'] = '0.98'

import paddle
import paddle.fluid as fluid
import numpy as np
import argparse
from reader import CityscapeDataset
import reader
import models
C
ccmeteorljh 已提交
14
import time
D
Dun 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

def add_argument(name, type, default, help):
    parser.add_argument('--' + name, default=default, type=type, help=help)


def add_arguments():
    add_argument('batch_size', int, 2,
                 "The number of images in each batch during training.")
    add_argument('train_crop_size', int, 769,
                 "'Image crop size during training.")
    add_argument('base_lr', float, 0.0001,
                 "The base learning rate for model training.")
    add_argument('total_step', int, 90000, "Number of the training step.")
    add_argument('init_weights_path', str, None,
                 "Path of the initial weights in paddlepaddle format.")
    add_argument('save_weights_path', str, None,
                 "Path of the saved weights during training.")
    add_argument('dataset_path', str, None, "Cityscape dataset path.")
    add_argument('parallel', bool, False, "using ParallelExecutor.")
    add_argument('use_gpu', bool, True, "Whether use GPU or CPU.")


def load_model():
    if args.init_weights_path.endswith('/'):
        fluid.io.load_params(
            exe, dirname=args.init_weights_path, main_program=tp)
    else:
        fluid.io.load_params(
            exe, dirname="", filename=args.init_weights_path, main_program=tp)


def save_model():
    if args.save_weights_path.endswith('/'):
        fluid.io.save_params(
            exe, dirname=args.save_weights_path, main_program=tp)
    else:
        fluid.io.save_params(
            exe, dirname="", filename=args.save_weights_path, main_program=tp)


def loss(logit, label):
    label_nignore = (label < num_classes).astype('float32')
    label = fluid.layers.elementwise_min(
        label,
        fluid.layers.assign(np.array(
            [num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    label_nignore = fluid.layers.reshape(label_nignore, [-1, 1])
    loss = fluid.layers.softmax_with_cross_entropy(logit, label)
    loss = loss * label_nignore
    no_grad_set.add(label_nignore.name)
    no_grad_set.add(label.name)
    return loss, label_nignore


CityscapeDataset = reader.CityscapeDataset
parser = argparse.ArgumentParser()

add_arguments()

args = parser.parse_args()

models.clean()
models.bn_momentum = 0.9997
models.dropout_keep_prop = 0.9
deeplabv3p = models.deeplabv3p

sp = fluid.Program()
tp = fluid.Program()
crop_size = args.train_crop_size
batch_size = args.batch_size
image_shape = [crop_size, crop_size]
reader.default_config['crop_size'] = crop_size
reader.default_config['shuffle'] = True
num_classes = 19
weight_decay = 0.00004

base_lr = args.base_lr
total_step = args.total_step

no_grad_set = set()

with fluid.program_guard(tp, sp):
    img = fluid.layers.data(
        name='img', shape=[3] + image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=image_shape, dtype='int32')
    logit = deeplabv3p(img)
    pred = fluid.layers.argmax(logit, axis=1).astype('int32')
    loss, mask = loss(logit, label)
    lr = fluid.layers.polynomial_decay(
        base_lr, total_step, end_learning_rate=0, power=0.9)
    area = fluid.layers.elementwise_max(
        fluid.layers.reduce_mean(mask),
        fluid.layers.assign(np.array(
            [0.1], dtype=np.float32)))
    loss_mean = fluid.layers.reduce_mean(loss) / area

    opt = fluid.optimizer.Momentum(
        lr,
        momentum=0.9,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=weight_decay), )
    retv = opt.minimize(loss_mean, startup_program=sp, no_grad_set=no_grad_set)

fluid.memory_optimize(
    tp, print_log=False, skip_opt_set=[pred.name, loss_mean.name], level=1)

place = fluid.CPUPlace()
if args.use_gpu:
    place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(sp)

if args.init_weights_path:
132
    print("load from:", args.init_weights_path)
D
Dun 已提交
133 134 135 136 137 138 139 140 141 142 143
    load_model()

dataset = CityscapeDataset(args.dataset_path, 'train')

if args.parallel:
    exe_p = fluid.ParallelExecutor(
        use_cuda=True, loss_name=loss_mean.name, main_program=tp)

batches = dataset.get_batch_generator(batch_size, total_step)

for i, imgs, labels, names in batches:
C
ccmeteorljh 已提交
144
    prev_start_time = time.time()
D
Dun 已提交
145 146 147 148 149 150 151 152 153
    if args.parallel:
        retv = exe_p.run(fetch_list=[pred.name, loss_mean.name],
                         feed={'img': imgs,
                               'label': labels})
    else:
        retv = exe.run(tp,
                       feed={'img': imgs,
                             'label': labels},
                       fetch_list=[pred, loss_mean])
C
ccmeteorljh 已提交
154
    end_time = time.time()
D
Dun 已提交
155
    if i % 100 == 0:
156
        print("Model is saved to", args.save_weights_path)
D
Dun 已提交
157
        save_model()
C
ccmeteorljh 已提交
158 159
    print("step {:d}, loss: {:.6f}, step_time_cost: {:.3f}" .format(i,
                    np.mean(retv[1]), end_time - prev_start_time))
D
Dun 已提交
160

161
print("Training done. Model is saved to", args.save_weights_path)
D
Dun 已提交
162
save_model()