optimization.py 5.4 KB
Newer Older
0
0YuanZhang0 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization and learning rate scheduling."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
0
0YuanZhang0 已提交
22
from dgu.utils.fp16 import create_master_params_grads, master_param_to_train_param
Y
Yibing Liu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps):
    """ Applies linear warmup of learning rate from 0 and decay to 0."""
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="scheduled_learning_rate")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter()

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                warmup_lr = learning_rate * (global_step / warmup_steps)
                fluid.layers.tensor.assign(warmup_lr, lr)
            with switch.default():
                decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay(
                    learning_rate=learning_rate,
                    decay_steps=num_train_steps,
                    end_learning_rate=0.0,
                    power=1.0,
                    cycle=False)
                fluid.layers.tensor.assign(decayed_lr, lr)

        return lr


def optimization(loss,
                 warmup_steps,
                 num_train_steps,
                 learning_rate,
                 train_program,
                 startup_prog,
                 weight_decay,
                 scheduler='linear_warmup_decay',
                 use_fp16=False,
                 loss_scaling=1.0):
    if warmup_steps > 0:
        if scheduler == 'noam_decay':
            scheduled_lr = fluid.layers.learning_rate_scheduler\
             .noam_decay(1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
        elif scheduler == 'linear_warmup_decay':
            scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
                                               num_train_steps)
        else:
            raise ValueError("Unkown learning rate scheduler, should be "
                             "'noam_decay' or 'linear_warmup_decay'")
        optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
    else:
        optimizer = fluid.optimizer.Adam(learning_rate=learning_rate)
        scheduled_lr = learning_rate

    clip_norm_thres = 1.0
    # When using mixed precision training, scale the gradient clip threshold
    # by loss_scaling
    if use_fp16 and loss_scaling > 1.0:
        clip_norm_thres *= loss_scaling
    fluid.clip.set_gradient_clip(
        clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=clip_norm_thres))

    def exclude_from_weight_decay(name):
        if name.find("layer_norm") > -1:
            return True
        bias_suffix = ["_bias", "_b", ".b_0"]
        for suffix in bias_suffix:
            if name.endswith(suffix):
                return True
        return False

    param_list = dict()

    if use_fp16:
        param_grads = optimizer.backward(loss)
        master_param_grads = create_master_params_grads(
            param_grads, train_program, startup_prog, loss_scaling)

        for param, _ in master_param_grads:
            param_list[param.name] = param * 1.0
            param_list[param.name].stop_gradient = True

        optimizer.apply_gradients(master_param_grads)

        if weight_decay > 0:
            for param, grad in master_param_grads:
                if exclude_from_weight_decay(param.name.rstrip(".master")):
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), fluid.framework.name_scope("weight_decay"):
                    updated_param = param - param_list[
                        param.name] * weight_decay * scheduled_lr
                    fluid.layers.assign(output=param, input=updated_param)

        master_param_to_train_param(master_param_grads, param_grads,
                                    train_program)

    else:
        for param in train_program.global_block().all_parameters():
            param_list[param.name] = param * 1.0
            param_list[param.name].stop_gradient = True

        _, param_grads = optimizer.minimize(loss)

        if weight_decay > 0:
            for param, grad in param_grads:
                if exclude_from_weight_decay(param.name):
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), fluid.framework.name_scope("weight_decay"):
                    updated_param = param - param_list[
                        param.name] * weight_decay * scheduled_lr
                    fluid.layers.assign(output=param, input=updated_param)

    return scheduled_lr