evaluation.py 11.8 KB
Newer Older
0
0YuanZhang0 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
Y
Yibing Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
0
0YuanZhang0 已提交
14
"""evaluate task metrics"""
Y
Yibing Liu 已提交
15 16 17 18 19 20 21 22

import sys


class EvalDA(object):
    """
    evaluate da testset, swda|mrda
    """
0
0YuanZhang0 已提交
23
    def __init__(self, task_name, pred, refer): 
Y
Yibing Liu 已提交
24 25 26 27
        """
        predict file
        """
        self.pred_file = pred
0
0YuanZhang0 已提交
28
        self.refer_file = refer
Y
Yibing Liu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    def load_data(self): 
        """
        load reference label and predict label
        """
        pred_label = []
        refer_label = []
        with open(self.refer_file, 'r') as fr: 
            for line in fr:  
                label = line.rstrip('\n').split('\t')[1]
                refer_label.append(int(label))
        idx = 0
        with open(self.pred_file, 'r') as fr: 
            for line in fr: 
                elems = line.rstrip('\n').split('\t')
                if len(elems) != 2 or not elems[0].isdigit():
                    continue
                tag_id = int(elems[1])
                pred_label.append(tag_id)
        return pred_label, refer_label

    def evaluate(self): 
        """
        calculate acc metrics
        """
        pred_label, refer_label = self.load_data()
        common_num = 0
        total_num = len(pred_label)
        for i in range(total_num): 
            if pred_label[i] == refer_label[i]: 
                common_num += 1
        acc = float(common_num) / total_num
        return acc


class EvalATISIntent(object):
    """
    evaluate da testset, swda|mrda
    """
0
0YuanZhang0 已提交
68
    def __init__(self, pred, refer): 
Y
Yibing Liu 已提交
69 70 71 72
        """
        predict file
        """
        self.pred_file = pred
0
0YuanZhang0 已提交
73
        self.refer_file = refer
Y
Yibing Liu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    def load_data(self): 
        """
        load reference label and predict label
        """
        pred_label = []
        refer_label = []
        with open(self.refer_file, 'r') as fr: 
            for line in fr:  
                label = line.rstrip('\n').split('\t')[0]
                refer_label.append(int(label))
        idx = 0
        with open(self.pred_file, 'r') as fr: 
            for line in fr: 
                elems = line.rstrip('\n').split('\t')
                if len(elems) != 2 or not elems[0].isdigit():
                    continue
                tag_id = int(elems[1])
                pred_label.append(tag_id)
        return pred_label, refer_label

    def evaluate(self): 
        """
        calculate acc metrics
        """
        pred_label, refer_label = self.load_data()
        common_num = 0
        total_num = len(pred_label)
        for i in range(total_num): 
            if pred_label[i] == refer_label[i]: 
                common_num += 1
        acc = float(common_num) / total_num
        return acc


class EvalATISSlot(object): 
    """
    evaluate atis slot
    """
0
0YuanZhang0 已提交
113
    def __init__(self, pred, refer): 
Y
Yibing Liu 已提交
114 115 116 117
        """
        pred file
        """
        self.pred_file = pred
0
0YuanZhang0 已提交
118
        self.refer_file = refer
Y
Yibing Liu 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

    def load_data(self): 
        """
        load reference label and predict label
        """
        pred_label = []
        refer_label = []
        with open(self.refer_file, 'r') as fr: 
            for line in fr: 
                labels = line.rstrip('\n').split('\t')[1].split()
                labels = [int(l) for l in labels]
                refer_label.append(labels)
        with open(self.pred_file, 'r') as fr: 
            for line in fr: 
                if len(line.split('\t')) != 2 or not line[0].isdigit(): 
                    continue
                labels = line.rstrip('\n').split('\t')[1].split()[1:]
                labels = [int(l) for l in labels]
                pred_label.append(labels)
        pred_label_equal = []
        refer_label_equal = []
        assert len(refer_label) == len(pred_label)
        for i in range(len(refer_label)): 
            num = len(refer_label[i])
            refer_label_equal.extend(refer_label[i])
            pred_label[i] = pred_label[i][: num]
            pred_label_equal.extend(pred_label[i])

        return pred_label_equal, refer_label_equal

    def evaluate(self):  
        """
        evaluate f1_micro score
        """
        pred_label, refer_label = self.load_data()
        tp = dict()
        fn = dict()
        fp = dict()
        for i in range(len(refer_label)): 
            if refer_label[i] == pred_label[i]:
                if refer_label[i] not in tp: 
                    tp[refer_label[i]] = 0
                tp[refer_label[i]] += 1
            else: 
                if pred_label[i] not in fp: 
                    fp[pred_label[i]] = 0
                fp[pred_label[i]] += 1
                if refer_label[i] not in fn:
                    fn[refer_label[i]] = 0
                fn[refer_label[i]] += 1

        results = ["label    precision    recall"]
        for i in range(0, 130): 
            if i not in tp: 
                results.append(" %s:    0.0     0.0" % i)
                continue
            if i in fp: 
                precision = float(tp[i]) / (tp[i] + fp[i])
            else: 
                precision = 1.0
            if i in fn: 
                recall = float(tp[i]) / (tp[i] + fn[i])
            else: 
                recall = 1.0
            results.append(" %s:    %.4f    %.4f" % (i, precision, recall))
        tp_total = sum(tp.values())
        fn_total = sum(fn.values())
        fp_total = sum(fp.values())
        p_total = float(tp_total) / (tp_total + fp_total)
        r_total = float(tp_total) / (tp_total + fn_total)
        f_micro = 2 * p_total * r_total / (p_total + r_total)
        results.append("f1_micro: %.4f" % (f_micro))
        return "\n".join(results)


class EvalUDC(object): 
    """
    evaluate udc
    """
0
0YuanZhang0 已提交
198
    def __init__(self, pred, refer): 
Y
Yibing Liu 已提交
199 200 201 202
        """
        predict file
        """
        self.pred_file = pred
0
0YuanZhang0 已提交
203
        self.refer_file = refer
Y
Yibing Liu 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    def load_data(self): 
        """
        load reference label and predict label
        """
        data = [] 
        refer_label = []
        with open(self.refer_file, 'r') as fr: 
            for line in fr: 
                label = line.rstrip('\n').split('\t')[0]
                refer_label.append(label)
        idx = 0
        with open(self.pred_file, 'r') as fr: 
            for line in fr: 
                elems = line.rstrip('\n').split('\t')
                if len(elems) != 2 or not elems[0].isdigit(): 
                    continue
                match_prob = elems[1]
                data.append((float(match_prob), int(refer_label[idx])))
                idx += 1
        return data

    def get_p_at_n_in_m(self, data, n, m, ind):
        """
        calculate precision in recall n
        """
        pos_score = data[ind][0]
        curr = data[ind: ind + m]
        curr = sorted(curr, key = lambda x: x[0], reverse = True)

        if curr[n - 1][0] <= pos_score:
            return 1
        return 0

    def evaluate(self):
        """
        calculate udc data
        """
        data = self.load_data() 
        assert len(data) % 10 == 0
        
        p_at_1_in_2 = 0.0
        p_at_1_in_10 = 0.0
        p_at_2_in_10 = 0.0
        p_at_5_in_10 = 0.0

        length = len(data)/10

        for i in range(0, length):
            ind = i * 10
            assert data[ind][1] == 1
    
            p_at_1_in_2 += self.get_p_at_n_in_m(data, 1, 2, ind)
            p_at_1_in_10 += self.get_p_at_n_in_m(data, 1, 10, ind)
            p_at_2_in_10 += self.get_p_at_n_in_m(data, 2, 10, ind)
            p_at_5_in_10 += self.get_p_at_n_in_m(data, 5, 10, ind)

        metrics_out = [p_at_1_in_2 / length, p_at_1_in_10 / length, \
                p_at_2_in_10 / length, p_at_5_in_10 / length]
        return metrics_out 


class EvalDSTC2(object): 
    """
    evaluate dst testset, dstc2
    """
0
0YuanZhang0 已提交
270
    def __init__(self, task_name, pred, refer):
Y
Yibing Liu 已提交
271 272 273 274 275
        """
        predict file
        """
        self.task_name = task_name
        self.pred_file = pred
0
0YuanZhang0 已提交
276
        self.refer_file = refer
Y
Yibing Liu 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def load_data(self): 
        """
        load reference label and predict label
        """
        pred_label = []
        refer_label = []
        with open(self.refer_file, 'r') as fr: 
            for line in fr: 
                line = line.strip('\n')
                labels = [int(l) for l in line.split('\t')[-1].split()]
                labels = sorted(list(set(labels)))
                refer_label.append(" ".join([str(l) for l in labels]))
        all_pred = []
        with open(self.pred_file, 'r') as fr: 
            for line in fr: 
                line = line.strip('\n')
                all_pred.append(line)
        all_pred = all_pred[len(all_pred) - len(refer_label):]
        for line in all_pred: 
            labels = [int(l) for l in line.split('\t')[-1].split()]
            labels = sorted(list(set(labels)))
            pred_label.append(" ".join([str(l) for l in labels]))
        return pred_label, refer_label

    def evaluate(self): 
        """
        calculate joint acc && overall acc
        """
        overall_all = 0.0
        correct_joint = 0
        pred_label, refer_label = self.load_data()
        for i in range(len(refer_label)): 
            if refer_label[i] != pred_label[i]: 
                continue
            correct_joint += 1
        joint_all = float(correct_joint) / len(refer_label)
        metrics_out = [joint_all, overall_all]
        return metrics_out


0
0YuanZhang0 已提交
318 319
def evaluate(task_name, pred_file, refer_file): 
    """evaluate task metrics"""
Y
Yibing Liu 已提交
320
    if task_name.lower() == 'udc': 
0
0YuanZhang0 已提交
321
        eval_inst = EvalUDC(pred_file, refer_file)
Y
Yibing Liu 已提交
322 323 324 325 326 327 328 329
        eval_metrics = eval_inst.evaluate()
        print("MATCHING TASK: %s metrics in testset: " % task_name)
        print("R1@2: %s" % eval_metrics[0])
        print("R1@10: %s" % eval_metrics[1])
        print("R2@10: %s" % eval_metrics[2])
        print("R5@10: %s" % eval_metrics[3])

    elif task_name.lower() in ['swda', 'mrda']: 
0
0YuanZhang0 已提交
330
        eval_inst = EvalDA(task_name.lower(), pred_file, refer_file)
Y
Yibing Liu 已提交
331 332 333 334 335
        eval_metrics = eval_inst.evaluate()
        print("DA TASK: %s metrics in testset: " % task_name)
        print("ACC: %s" % eval_metrics)

    elif task_name.lower() == 'atis_intent': 
0
0YuanZhang0 已提交
336
        eval_inst = EvalATISIntent(pred_file, refer_file)
Y
Yibing Liu 已提交
337 338 339 340 341
        eval_metrics = eval_inst.evaluate()
        print("INTENTION TASK: %s metrics in testset: " % task_name)
        print("ACC: %s" % eval_metrics)

    elif task_name.lower() == 'atis_slot': 
0
0YuanZhang0 已提交
342
        eval_inst = EvalATISSlot(pred_file, refer_file)
Y
Yibing Liu 已提交
343 344 345 346
        eval_metrics = eval_inst.evaluate()
        print("SLOT FILLING TASK: %s metrics in testset: " % task_name)
        print(eval_metrics)
    elif task_name.lower() in ['dstc2', 'dstc2_asr']: 
0
0YuanZhang0 已提交
347
        eval_inst = EvalDSTC2(task_name.lower(), pred_file, refer_file)
Y
Yibing Liu 已提交
348 349 350 351
        eval_metrics = eval_inst.evaluate()
        print("DST TASK: %s metrics in testset: " % task_name)
        print("JOINT ACC: %s" % eval_metrics[0])
    elif task_name.lower() == "multi-woz": 
0
0YuanZhang0 已提交
352
        eval_inst = EvalMultiWoz(pred_file, refer_file)
Y
Yibing Liu 已提交
353 354 355 356 357 358 359
        eval_metrics = eval_inst.evaluate()
        print("DST TASK: %s metrics in testset: " % task_name)
        print("JOINT ACC: %s" % eval_metrics[0])
        print("OVERALL ACC: %s" % eval_metrics[1])
    else: 
        print("task name not in [udc|swda|mrda|atis_intent|atis_slot|dstc2|dstc2_asr|multi-woz]")

0
0YuanZhang0 已提交
360 361 362 363 364 365 366 367 368 369 370

if __name__ == "__main__": 
    if len(sys.argv[1:]) < 3: 
        print("please input task_name predict_file reference_file")

    task_name = sys.argv[1]
    pred_file = sys.argv[2]
    refer_file = sys.argv[3]


    evaluate(task_name, pred_file, refer_file)