infer.py 2.7 KB
Newer Older
1 2
#!/usr/bin/env python
# -*- coding: utf-8 -*-
C
caoying03 已提交
3 4 5
import os
import logging
import gzip
6 7

import paddle.v2 as paddle
C
caoying03 已提交
8 9 10 11
from network_conf import ngram_lm

logger = logging.getLogger("paddle")
logger.setLevel(logging.WARNING)
12 13 14


def decode_res(infer_res, dict_size):
15 16 17 18 19 20 21 22 23 24
    """
    Inferring probabilities are orginized as a complete binary tree.
    The actual labels are leaves (indices are counted from class number).
    This function travels paths decoded from inferring results.
    If the probability >0.5 then go to right child, otherwise go to left child.

    param infer_res: inferring result
    param dict_size: class number
    return predict_lbls: actual class
    """
25 26 27 28 29 30 31 32 33 34 35 36 37
    predict_lbls = []
    infer_res = infer_res > 0.5
    for i, probs in enumerate(infer_res):
        idx = 0
        result = 1
        while idx < len(probs):
            result <<= 1
            if probs[idx]:
                result |= 1
            if probs[idx]:
                idx = idx * 2 + 2  # right child
            else:
                idx = idx * 2 + 1  # left child
38

39 40 41 42 43
        predict_lbl = result - dict_size
        predict_lbls.append(predict_lbl)
    return predict_lbls


44 45 46 47 48 49 50 51 52
def predict(batch_ins, idx_word_dict, dict_size, prediction_layer, parameters):
    infer_res = paddle.infer(
        output_layer=prediction_layer, parameters=parameters, input=batch_ins)

    predict_lbls = decode_res(infer_res, dict_size)
    predict_words = [idx_word_dict[lbl] for lbl in predict_lbls]  # map to word

    # Ouput format: word1 word2 word3 word4 -> predict label
    for i, ins in enumerate(batch_ins):
C
caoying03 已提交
53 54 55
        print(" ".join([idx_word_dict[w]
                        for w in ins]) + " -> " + predict_words[i])

56

C
caoying03 已提交
57 58
def main(model_path):
    assert os.path.exists(model_path), "trained model does not exist."
59

60
    paddle.init(use_gpu=False, trainer_count=1)
61
    word_dict = paddle.dataset.imikolov.build_dict(min_word_freq=2)
62
    dict_size = len(word_dict)
C
caoying03 已提交
63
    prediction_layer = ngram_lm(
64
        is_train=False, hidden_size=256, embed_size=32, dict_size=dict_size)
65

C
caoying03 已提交
66
    with gzip.open(model_path, "r") as f:
67 68
        parameters = paddle.parameters.Parameters.from_tar(f)

69 70 71
    idx_word_dict = dict((v, k) for k, v in word_dict.items())
    batch_size = 64
    batch_ins = []
72
    ins_iter = paddle.dataset.imikolov.test(word_dict, 5)
73

74
    for ins in ins_iter():
75 76 77 78 79 80 81 82 83
        batch_ins.append(ins[:-1])
        if len(batch_ins) == batch_size:
            predict(batch_ins, idx_word_dict, dict_size, prediction_layer,
                    parameters)
            batch_ins = []

    if len(batch_ins) > 0:
        predict(batch_ins, idx_word_dict, dict_size, prediction_layer,
                parameters)
84 85


C
caoying03 已提交
86 87
if __name__ == "__main__":
    main("models/hsigmoid_batch_00010.tar.gz")