Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
3adc3ab1
M
models
项目概览
PaddlePaddle
/
models
接近 2 年 前同步成功
通知
230
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3adc3ab1
编写于
5月 05, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Change table_projection to embedding layer, predict all test instance batch by batch
上级
347626a4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
50 addition
and
47 deletion
+50
-47
word_embedding/hsigmoid_conf.py
word_embedding/hsigmoid_conf.py
+15
-18
word_embedding/hsigmoid_predict.py
word_embedding/hsigmoid_predict.py
+31
-25
word_embedding/hsigmoid_train.py
word_embedding/hsigmoid_train.py
+4
-4
未找到文件。
word_embedding/
network
_conf.py
→
word_embedding/
hsigmoid
_conf.py
浏览文件 @
3adc3ab1
...
...
@@ -5,16 +5,7 @@ import math
import
paddle.v2
as
paddle
def
network_conf
(
is_train
,
hidden_size
,
embed_size
,
dict_size
):
def
word_embed
(
in_layer
):
''' word embedding layer '''
word_embed
=
paddle
.
layer
.
table_projection
(
input
=
in_layer
,
size
=
embed_size
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
"_proj"
,
initial_std
=
0.001
,
learning_rate
=
1
,
l2_rate
=
0
))
return
word_embed
def
network_conf
(
hidden_size
,
embed_size
,
dict_size
,
is_train
=
True
):
first_word
=
paddle
.
layer
.
data
(
name
=
'firstw'
,
type
=
paddle
.
data_type
.
integer_value
(
dict_size
))
second_word
=
paddle
.
layer
.
data
(
...
...
@@ -26,17 +17,23 @@ def network_conf(is_train, hidden_size, embed_size, dict_size):
target_word
=
paddle
.
layer
.
data
(
name
=
'fifthw'
,
type
=
paddle
.
data_type
.
integer_value
(
dict_size
))
first_word_embed
=
word_embed
(
first_word
)
second_word_embed
=
word_embed
(
second_word
)
third_word_embed
=
word_embed
(
third_word
)
fourth_word_embed
=
word_embed
(
fourth_word
)
context_embed
=
paddle
.
layer
.
concat
(
input
=
[
first_word_embed
,
second_word_embed
,
third_word_embed
,
fourth_word_embed
embed_param_attr
=
paddle
.
attr
.
Param
(
name
=
"_proj"
,
initial_std
=
0.001
,
learning_rate
=
1
,
l2_rate
=
0
)
embed_first_word
=
paddle
.
layer
.
embedding
(
input
=
first_word
,
size
=
embed_size
,
param_attr
=
embed_param_attr
)
embed_second_word
=
paddle
.
layer
.
embedding
(
input
=
second_word
,
size
=
embed_size
,
param_attr
=
embed_param_attr
)
embed_third_word
=
paddle
.
layer
.
embedding
(
input
=
third_word
,
size
=
embed_size
,
param_attr
=
embed_param_attr
)
embed_fourth_word
=
paddle
.
layer
.
embedding
(
input
=
fourth_word
,
size
=
embed_size
,
param_attr
=
embed_param_attr
)
embed_context
=
paddle
.
layer
.
concat
(
input
=
[
embed_first_word
,
embed_second_word
,
embed_third_word
,
embed_fourth_word
])
hidden_layer
=
paddle
.
layer
.
fc
(
input
=
context_embed
,
input
=
embed_context
,
size
=
hidden_size
,
act
=
paddle
.
activation
.
Sigmoid
(),
layer_attr
=
paddle
.
attr
.
Extra
(
drop_rate
=
0.5
),
...
...
word_embedding/
predict_v2
.py
→
word_embedding/
hsigmoid_predict
.py
浏览文件 @
3adc3ab1
...
...
@@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
import
paddle.v2
as
paddle
from
network
_conf
import
network_conf
from
hsigmoid
_conf
import
network_conf
import
gzip
...
...
@@ -36,41 +36,47 @@ def decode_res(infer_res, dict_size):
return
predict_lbls
def
predict
(
batch_ins
,
idx_word_dict
,
dict_size
,
prediction_layer
,
parameters
):
infer_res
=
paddle
.
infer
(
output_layer
=
prediction_layer
,
parameters
=
parameters
,
input
=
batch_ins
)
predict_lbls
=
decode_res
(
infer_res
,
dict_size
)
predict_words
=
[
idx_word_dict
[
lbl
]
for
lbl
in
predict_lbls
]
# map to word
# Ouput format: word1 word2 word3 word4 -> predict label
for
i
,
ins
in
enumerate
(
batch_ins
):
print
(
idx_word_dict
[
ins
[
0
]]
+
' '
+
\
idx_word_dict
[
ins
[
1
]]
+
' '
+
\
idx_word_dict
[
ins
[
2
]]
+
' '
+
\
idx_word_dict
[
ins
[
3
]]
+
' '
+
\
' -> '
+
predict_words
[
i
])
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
(
typo
_freq
=
2
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
(
min_word
_freq
=
2
)
dict_size
=
len
(
word_dict
)
prediction
=
network_conf
(
prediction
_layer
=
network_conf
(
is_train
=
False
,
hidden_size
=
256
,
embed_size
=
32
,
dict_size
=
dict_size
)
print
(
'Load model ....'
)
with
gzip
.
open
(
'./models/model_pass_00000.tar.gz'
)
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
i
ns_num
=
10
# total 10 instance for prediction
ins_lst
=
[]
# input data
i
dx_word_dict
=
dict
((
v
,
k
)
for
k
,
v
in
word_dict
.
items
())
batch_size
=
64
batch_ins
=
[]
ins_iter
=
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
5
)
for
ins
in
ins_iter
():
ins_lst
.
append
(
ins
[:
-
1
])
if
len
(
ins_lst
)
>=
ins_num
:
break
infer_res
=
paddle
.
infer
(
output_layer
=
prediction
,
parameters
=
parameters
,
input
=
ins_lst
)
idx_word_dict
=
dict
((
v
,
k
)
for
k
,
v
in
word_dict
.
items
())
predict_lbls
=
decode_res
(
infer_res
,
dict_size
)
predict_words
=
[
idx_word_dict
[
lbl
]
for
lbl
in
predict_lbls
]
# map to word
# Ouput format: word1 word2 word3 word4 -> predict label
for
i
,
ins
in
enumerate
(
ins_lst
):
print
idx_word_dict
[
ins
[
0
]]
+
' '
+
\
idx_word_dict
[
ins
[
1
]]
+
' '
+
\
idx_word_dict
[
ins
[
2
]]
+
' '
+
\
idx_word_dict
[
ins
[
3
]]
+
' '
+
\
' -> '
+
predict_words
[
i
]
batch_ins
.
append
(
ins
[:
-
1
])
if
len
(
batch_ins
)
==
batch_size
:
predict
(
batch_ins
,
idx_word_dict
,
dict_size
,
prediction_layer
,
parameters
)
batch_ins
=
[]
if
len
(
batch_ins
)
>
0
:
predict
(
batch_ins
,
idx_word_dict
,
dict_size
,
prediction_layer
,
parameters
)
if
__name__
==
'__main__'
:
...
...
word_embedding/
train_v2
.py
→
word_embedding/
hsigmoid_train
.py
浏览文件 @
3adc3ab1
...
...
@@ -2,13 +2,13 @@
# -*- coding: utf-8 -*-
import
paddle.v2
as
paddle
from
network
_conf
import
network_conf
from
hsigmoid
_conf
import
network_conf
import
gzip
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
(
typo
_freq
=
2
)
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
(
min_word
_freq
=
2
)
dict_size
=
len
(
word_dict
)
cost
=
network_conf
(
is_train
=
True
,
hidden_size
=
256
,
embed_size
=
32
,
dict_size
=
dict_size
)
...
...
@@ -25,8 +25,8 @@ def main():
result
=
trainer
.
test
(
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
5
),
32
))
print
"Pass %d, Batch %d, Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
print
(
"Pass %d, Batch %d, Cost %f, Test Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
result
.
cost
)
)
feeding
=
{
'firstw'
:
0
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录