evaluator.py 5.4 KB
Newer Older
O
overlordmax 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
from paddle import fluid
import utils
import numpy as np

class BiRNN(object):
    def input_data(self, item_len):
        user_slot_names = fluid.data(name='user_slot_names', shape=[None, 1], dtype='int64', lod_level=1)
        item_slot_names = fluid.data(name='item_slot_names', shape=[None, item_len], dtype='int64', lod_level=1)
        lens = fluid.data(name='lens', shape=[None], dtype='int64')
        labels = fluid.data(name='labels', shape=[None, item_len], dtype='int64', lod_level=1)

        inputs = [user_slot_names] + [item_slot_names] + [lens] + [labels]
        
        return inputs

    def default_normal_initializer(self, nf=128):
        return fluid.initializer.TruncatedNormal(loc=0.0, scale=np.sqrt(1.0/nf))

    def default_regularizer(self):
        return None

    def default_fc(self, data, size, num_flatten_dims=1, act=None, name=None):
        return fluid.layers.fc(input=data,
                            size=size,
                            num_flatten_dims=num_flatten_dims,
                            param_attr=fluid.ParamAttr(initializer=self.default_normal_initializer(size),
                                                    regularizer=self.default_regularizer()),
                            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.0),
                                                    regularizer=self.default_regularizer()),
                            act=act,
                            name=name)

    def default_embedding(self, data, vocab_size, embed_size):
        reg = fluid.regularizer.L2Decay(1e-5)   # IMPORTANT, to prevent overfitting.
        embed = fluid.embedding(input=data,
                                size=[vocab_size, embed_size],
                                param_attr=fluid.ParamAttr(initializer=fluid.initializer.Xavier(),
O
overlordmax 已提交
38
                                regularizer=reg),
O
overlordmax 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                                is_sparse=True)

        return embed

    def default_drnn(self, data, nf, is_reverse, h_0):
        return fluid.layers.dynamic_gru(input=data,
                                        size=nf,
                                        param_attr=fluid.ParamAttr(initializer=self.default_normal_initializer(nf),
                                                            regularizer=self.default_regularizer()),
                                        bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.0),
                                                            regularizer=self.default_regularizer()),
                                        is_reverse=is_reverse,
                                        h_0=h_0)

    def net(self, inputs, hidden_size, user_vocab, item_vocab, embed_size):
        #encode
        user_embedding = self.default_embedding(inputs[0], user_vocab, embed_size)
        user_feature = self.default_fc(data=user_embedding,
                                        size=hidden_size,
                                        num_flatten_dims=1,
                                        act='relu', 
                                        name='user_feature_fc')

        item_embedding = self.default_embedding(inputs[1], item_vocab, embed_size)
        item_embedding = fluid.layers.sequence_unpad(x=item_embedding, length=inputs[2])
       
        item_fc = self.default_fc(data=item_embedding, 
                                    size=hidden_size, 
                                    num_flatten_dims=1, 
                                    act='relu', 
                                    name='item_fc')
        
        pos = utils.fluid_sequence_get_pos(item_fc)
        pos_embed = self.default_embedding(pos, user_vocab, embed_size)
        pos_embed = fluid.layers.squeeze(pos_embed, [1])
  
        # item gru
        gru_input = self.default_fc(data=fluid.layers.concat([item_fc, pos_embed], 1),
                                    size=hidden_size * 3,
                                    num_flatten_dims=1,
                                    act='relu',
                                    name='item_gru_fc')

        item_gru_forward = self.default_drnn(data=gru_input,
                                            nf=hidden_size,
                                            h_0=user_feature,
                                            is_reverse=False)

        item_gru_backward = self.default_drnn(data=gru_input,
                                            nf=hidden_size,
                                            h_0=user_feature,
                                            is_reverse=True)
        item_gru = fluid.layers.concat([item_gru_forward, item_gru_backward], axis=1)

        out_click_fc1 = self.default_fc(data=item_gru,
                                        size=hidden_size,
                                        num_flatten_dims=1,
                                        act='relu',
                                        name='out_click_fc1')

        click_prob = self.default_fc(data=out_click_fc1,
                                    size=2,
                                    num_flatten_dims=1,
                                    act='softmax',
                                    name='out_click_fc2')

        labels = fluid.layers.sequence_unpad(x=inputs[3], length=inputs[2])
        loss = fluid.layers.reduce_mean(fluid.layers.cross_entropy(input=click_prob, label=labels))
        auc_val, batch_auc, auc_states = fluid.layers.auc(input=click_prob, label=labels)

        return loss, auc_val, batch_auc, auc_states