from paddle import fluid import utils import numpy as np class BiRNN(object): def input_data(self, item_len): user_slot_names = fluid.data(name='user_slot_names', shape=[None, 1], dtype='int64', lod_level=1) item_slot_names = fluid.data(name='item_slot_names', shape=[None, item_len], dtype='int64', lod_level=1) lens = fluid.data(name='lens', shape=[None], dtype='int64') labels = fluid.data(name='labels', shape=[None, item_len], dtype='int64', lod_level=1) inputs = [user_slot_names] + [item_slot_names] + [lens] + [labels] return inputs def default_normal_initializer(self, nf=128): return fluid.initializer.TruncatedNormal(loc=0.0, scale=np.sqrt(1.0/nf)) def default_regularizer(self): return None def default_fc(self, data, size, num_flatten_dims=1, act=None, name=None): return fluid.layers.fc(input=data, size=size, num_flatten_dims=num_flatten_dims, param_attr=fluid.ParamAttr(initializer=self.default_normal_initializer(size), regularizer=self.default_regularizer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.0), regularizer=self.default_regularizer()), act=act, name=name) def default_embedding(self, data, vocab_size, embed_size): reg = fluid.regularizer.L2Decay(1e-5) # IMPORTANT, to prevent overfitting. embed = fluid.embedding(input=data, size=[vocab_size, embed_size], param_attr=fluid.ParamAttr(initializer=fluid.initializer.Xavier(), regularizer=reg), is_sparse=True) return embed def default_drnn(self, data, nf, is_reverse, h_0): return fluid.layers.dynamic_gru(input=data, size=nf, param_attr=fluid.ParamAttr(initializer=self.default_normal_initializer(nf), regularizer=self.default_regularizer()), bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.0), regularizer=self.default_regularizer()), is_reverse=is_reverse, h_0=h_0) def net(self, inputs, hidden_size, user_vocab, item_vocab, embed_size): #encode user_embedding = self.default_embedding(inputs[0], user_vocab, embed_size) user_feature = self.default_fc(data=user_embedding, size=hidden_size, num_flatten_dims=1, act='relu', name='user_feature_fc') item_embedding = self.default_embedding(inputs[1], item_vocab, embed_size) item_embedding = fluid.layers.sequence_unpad(x=item_embedding, length=inputs[2]) item_fc = self.default_fc(data=item_embedding, size=hidden_size, num_flatten_dims=1, act='relu', name='item_fc') pos = utils.fluid_sequence_get_pos(item_fc) pos_embed = self.default_embedding(pos, user_vocab, embed_size) pos_embed = fluid.layers.squeeze(pos_embed, [1]) # item gru gru_input = self.default_fc(data=fluid.layers.concat([item_fc, pos_embed], 1), size=hidden_size * 3, num_flatten_dims=1, act='relu', name='item_gru_fc') item_gru_forward = self.default_drnn(data=gru_input, nf=hidden_size, h_0=user_feature, is_reverse=False) item_gru_backward = self.default_drnn(data=gru_input, nf=hidden_size, h_0=user_feature, is_reverse=True) item_gru = fluid.layers.concat([item_gru_forward, item_gru_backward], axis=1) out_click_fc1 = self.default_fc(data=item_gru, size=hidden_size, num_flatten_dims=1, act='relu', name='out_click_fc1') click_prob = self.default_fc(data=out_click_fc1, size=2, num_flatten_dims=1, act='softmax', name='out_click_fc2') labels = fluid.layers.sequence_unpad(x=inputs[3], length=inputs[2]) loss = fluid.layers.reduce_mean(fluid.layers.cross_entropy(input=click_prob, label=labels)) auc_val, batch_auc, auc_states = fluid.layers.auc(input=click_prob, label=labels) return loss, auc_val, batch_auc, auc_states