train.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17
import argparse
import ast
18 19 20 21 22 23
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.dygraph.base import to_variable

H
Hongyu Liu 已提交
24 25 26 27 28 29 30 31 32
from paddle.fluid import framework

import math
import sys

IMAGENET1000 = 1281167
base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4
33 34


35
def parse_args():
D
Divano 已提交
36
    parser = argparse.ArgumentParser("Training for Resnet.")
37 38 39 40 41
    parser.add_argument(
        "--use_data_parallel",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to shuffle instances in each pass.")
D
Divano 已提交
42 43 44
    parser.add_argument("-e", "--epoch", default=120, type=int, help="set epoch")
    parser.add_argument("-b", "--batch_size", default=32, type=int, help="set epoch")
    parser.add_argument("--ce", action="store_true", help="run ce")
45 46 47 48 49
    args = parser.parse_args()
    return args


args = parse_args()
D
Divano 已提交
50
batch_size = args.batch_size
51

52
def optimizer_setting():
H
Hongyu Liu 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    total_images = IMAGENET1000

    step = int(math.ceil(float(total_images) / batch_size))

    epochs = [30, 60, 90]
    bd = [step * e for e in epochs]

    lr = []
    lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        momentum=momentum_rate,
        regularization=fluid.regularizer.L2Decay(l2_decay))

    return optimizer
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__(name_scope)

        self._conv = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

        self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True):
        super(BottleneckBlock, self).__init__(name_scope)

        self.conv0 = ConvBNLayer(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            self.full_name(),
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            self.full_name(),
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                self.full_name(),
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class ResNet(fluid.dygraph.Layer):
    def __init__(self, name_scope, layers=50, class_dim=102):
        super(ResNet, self).__init__(name_scope)

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
            self.full_name(),
            num_channels=3,
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu')
        self.pool2d_max = Pool2D(
            self.full_name(),
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        self.bottleneck_block_list = []
        num_channels = 64
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        self.full_name(),
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(self.full_name(),
                      size=class_dim,
                      act='softmax',
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = self.out(y)
        return y


H
Hongyu Liu 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
def eval(model, data):

    model.eval()
    total_loss = 0.0
    total_acc1 = 0.0
    total_acc5 = 0.0
    total_sample = 0
    for batch_id, data in enumerate(data()):
        dy_x_data = np.array(
            [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
        if len(np.array([x[1] for x in data]).astype('int64')) != batch_size:
            continue
        y_data = np.array([x[1] for x in data]).astype('int64').reshape(
            batch_size, 1)

        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label._stop_gradient = True

        out = model(img)
        #loss = fluid.layers.cross_entropy(input=out, label=label)
        #avg_loss = fluid.layers.mean(x=loss)

        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

        #dy_out = avg_loss.numpy()

        #total_loss += dy_out
        total_acc1 += acc_top1.numpy()
        total_acc5 += acc_top5.numpy()
        total_sample += 1

        # print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
        if batch_id % 10 == 0:
            print("test | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                  ( batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample))
D
Divano 已提交
267 268 269 270
    if args.ce:
        print("kpis\ttest_acc1\t%0.3f" % (total_acc1 / total_sample))
        print("kpis\ttest_acc5\t%0.3f" % (total_acc5 / total_sample))
        print("kpis\ttest_loss\t%0.3f" % (total_loss / total_sample))
H
Hongyu Liu 已提交
271 272 273 274 275
    print("final eval loss %0.3f acc1 %0.3f acc5 %0.3f" % \
          (total_loss / total_sample, \
           total_acc1 / total_sample, total_acc5 / total_sample))


276
def train_resnet():
D
Divano 已提交
277
    epoch = args.epoch
278 279 280 281
    trainer_count = fluid.dygraph.parallel.Env().nranks
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    with fluid.dygraph.guard(place):
D
Divano 已提交
282 283 284 285 286 287 288
        if args.ce:
            print("ce mode")
            seed = 33
            np.random.seed(seed)
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

289 290 291
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

292 293
        resnet = ResNet("resnet")
        optimizer = optimizer_setting()
294 295 296 297

        if args.use_data_parallel:
            resnet = fluid.dygraph.parallel.DataParallel(resnet, strategy)

298 299
        train_reader = paddle.batch(
            paddle.dataset.flowers.train(use_xmap=False), batch_size=batch_size)
300
        if args.use_data_parallel:
301 302
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)
H
Hongyu Liu 已提交
303 304 305 306 307 308

        test_reader = paddle.batch(
            paddle.dataset.flowers.test(use_xmap=False), batch_size=batch_size)

        #file_name = './model/epoch_0.npz'
        #model_data = np.load( file_name )
309

310
        for eop in range(epoch):
H
Hongyu Liu 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323

            resnet.train()
            total_loss = 0.0
            total_acc1 = 0.0
            total_acc5 = 0.0
            total_sample = 0

            #dict_state = resnet.state_dict()

            #resnet.load_dict( model_data )

            print("load finished")

324 325 326
            for batch_id, data in enumerate(train_reader()):
                dy_x_data = np.array(
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
H
Hongyu Liu 已提交
327 328
                if len(np.array([x[1]
                                 for x in data]).astype('int64')) != batch_size:
329 330
                    continue
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
331
                    -1, 1)
332

333 334 335
                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label._stop_gradient = True
336

337 338 339
                out = resnet(img)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                avg_loss = fluid.layers.mean(x=loss)
340

H
Hongyu Liu 已提交
341 342 343
                acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
                acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

344
                dy_out = avg_loss.numpy()
345 346 347 348 349 350 351

                if args.use_data_parallel:
                    avg_loss = resnet.scale_loss(avg_loss)
                    avg_loss.backward()
                    resnet.apply_collective_grads()
                else:
                    avg_loss.backward()
352

353 354
                optimizer.minimize(avg_loss)
                resnet.clear_gradients()
355

H
Hongyu Liu 已提交
356 357 358 359 360 361 362 363 364 365 366

                total_loss += dy_out
                total_acc1 += acc_top1.numpy()
                total_acc5 += acc_top5.numpy()
                total_sample += 1
                #print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
                if batch_id % 10 == 0:
                    print( "epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                           ( eop, batch_id, total_loss / total_sample, \
                             total_acc1 / total_sample, total_acc5 / total_sample))

D
Divano 已提交
367 368 369 370
            if args.ce:
                print("kpis\ttrain_acc1\t%0.3f" % (total_acc1 / total_sample))
                print("kpis\ttrain_acc5\t%0.3f" % (total_acc5 / total_sample))
                print("kpis\ttrain_loss\t%0.3f" % (total_loss / total_sample))
H
Hongyu Liu 已提交
371 372 373 374 375
            print("epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
                  (eop, batch_id, total_loss / total_sample, \
                   total_acc1 / total_sample, total_acc5 / total_sample))
            resnet.eval()
            eval(resnet, test_reader)
D
Divano 已提交
376
            fluid.dygraph.save_persistables(resnet.state_dict(), 'resnet_params')
377 378 379


if __name__ == '__main__':
380

381
    train_resnet()