train.py 12.9 KB
Newer Older
1 2 3
import os
import math
import time
4
import argparse
5 6 7 8 9 10 11 12 13

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import NormalInitializer

import reader


14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
def parse_args():
    parser = argparse.ArgumentParser("Run inference.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=256,
        help='The size of a batch. (default: %(default)d)')
    parser.add_argument(
        '--word_dict_len',
        type=int,
        default=1942563,
        help='The lenght of the word dictionary. (default: %(default)d)')
    parser.add_argument(
        '--label_dict_len',
        type=int,
        default=49,
        help='The lenght of the label dictionary. (default: %(default)d)')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type. (default: %(default)s)')
    parser.add_argument(
        '--train_data_dir',
        type=str,
        default='data/train_files',
        help='A directory with train data files. (default: %(default)s)')
    parser.add_argument(
        '--parallel',
        type=bool,
        default=False,
        help="Whether to use parallel training. (default: %(default)s)")
    parser.add_argument(
        '--test_data_dir',
        type=str,
        default='data/test_files',
        help='A directory with test data files. (default: %(default)s)')
    parser.add_argument(
        '--model_save_dir',
        type=str,
        default='./output',
        help='A directory for saving models. (default: %(default)s)')
    parser.add_argument(
        '--num_passes',
        type=int,
        default=1000,
        help='The number of epochs. (default: %(default)d)')
    args = parser.parse_args()
    return args


def print_arguments(args):
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
def load_reverse_dict(dict_path):
    return dict((idx, line.strip().split("\t")[0])
                for idx, line in enumerate(open(dict_path, "r").readlines()))


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def ner_net(word_dict_len, label_dict_len):
    IS_SPARSE = False
    word_dim = 32
    mention_dict_len = 57
    mention_dim = 20
    grnn_hidden = 36
    emb_lr = 5
    init_bound = 0.1

    def _net_conf(word, mark, target):
        word_embedding = fluid.layers.embedding(
            input=word,
            size=[word_dict_len, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="word_emb",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        mention_embedding = fluid.layers.embedding(
            input=mention,
            size=[mention_dict_len, mention_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="mention_emb",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        word_embedding_r = fluid.layers.embedding(
            input=word,
            size=[word_dict_len, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="word_emb_r",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        mention_embedding_r = fluid.layers.embedding(
            input=mention,
            size=[mention_dict_len, mention_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="mention_emb_r",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        word_mention_vector = fluid.layers.concat(
            input=[word_embedding, mention_embedding], axis=1)

        word_mention_vector_r = fluid.layers.concat(
            input=[word_embedding_r, mention_embedding_r], axis=1)

        pre_gru = fluid.layers.fc(
            input=word_mention_vector,
            size=grnn_hidden * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru = fluid.layers.dynamic_gru(
            input=pre_gru,
            size=grnn_hidden,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        pre_gru_r = fluid.layers.fc(
            input=word_mention_vector_r,
            size=grnn_hidden * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru_r = fluid.layers.dynamic_gru(
            input=pre_gru_r,
            size=grnn_hidden,
            is_reverse=True,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        gru_merged = fluid.layers.concat(input=[gru, gru_r], axis=1)

        emission = fluid.layers.fc(
            size=label_dict_len,
            input=gru_merged,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        crf_cost = fluid.layers.linear_chain_crf(
            input=emission,
            label=target,
            param_attr=fluid.ParamAttr(
                name='crfw',
J
jshower 已提交
204
                learning_rate=0.2, ))
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        avg_cost = fluid.layers.mean(x=crf_cost)
        return avg_cost, emission

    word = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)
    mention = fluid.layers.data(
        name='mention', shape=[1], dtype='int64', lod_level=1)
    target = fluid.layers.data(
        name="target", shape=[1], dtype='int64', lod_level=1)

    avg_cost, emission = _net_conf(word, mention, target)

    return avg_cost, emission, word, mention, target


def test2(exe, chunk_evaluator, inference_program, test_data, place,
          cur_fetch_list):
    chunk_evaluator.reset()
    for data in test_data():
        word = to_lodtensor(map(lambda x: x[0], data), place)
        mention = to_lodtensor(map(lambda x: x[1], data), place)
        target = to_lodtensor(map(lambda x: x[2], data), place)
        result_list = exe.run(
            inference_program,
J
jshower 已提交
228 229 230
            feed={"word": word,
                  "mention": mention,
                  "target": target},
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
            fetch_list=cur_fetch_list)
        number_infer = np.array(result_list[0])
        number_label = np.array(result_list[1])
        number_correct = np.array(result_list[2])
        chunk_evaluator.update(number_infer[0], number_label[0],
                               number_correct[0])
    return chunk_evaluator.eval()


def test(test_exe, chunk_evaluator, inference_program, test_data, place,
         cur_fetch_list):
    chunk_evaluator.reset()
    for data in test_data():
        word = to_lodtensor(map(lambda x: x[0], data), place)
        mention = to_lodtensor(map(lambda x: x[1], data), place)
        target = to_lodtensor(map(lambda x: x[2], data), place)
        result_list = test_exe.run(
            fetch_list=cur_fetch_list,
J
jshower 已提交
249 250 251
            feed={"word": word,
                  "mention": mention,
                  "target": target})
252 253 254
        number_infer = np.array(result_list[0])
        number_label = np.array(result_list[1])
        number_correct = np.array(result_list[2])
J
jshower 已提交
255 256
        chunk_evaluator.update(number_infer.sum(),
                               number_label.sum(), number_correct.sum())
257 258 259
    return chunk_evaluator.eval()


260 261 262
def main(args):
    if not os.path.exists(args.model_save_dir):
        os.makedirs(args.model_save_dir)
263 264 265 266

    main = fluid.Program()
    startup = fluid.Program()
    with fluid.program_guard(main, startup):
267 268
        avg_cost, feature_out, word, mention, target = ner_net(
            args.word_dict_len, args.label_dict_len)
269 270

        crf_decode = fluid.layers.crf_decoding(
J
jshower 已提交
271
            input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
J
jshower 已提交
272

273 274 275
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
        sgd_optimizer.minimize(avg_cost)

276 277 278 279 280
        (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
         num_correct_chunks) = fluid.layers.chunk_eval(
             input=crf_decode,
             label=target,
             chunk_scheme="IOB",
281
             num_chunk_types=int(math.ceil((args.label_dict_len - 1) / 2.0)))
282 283 284 285 286 287 288 289 290 291

        chunk_evaluator = fluid.metrics.ChunkEvaluator()

        inference_program = fluid.default_main_program().clone()
        with fluid.program_guard(inference_program):
            inference_program = fluid.io.get_inference_program(
                [num_infer_chunks, num_label_chunks, num_correct_chunks])

        train_reader = paddle.batch(
            paddle.reader.shuffle(
292 293
                reader.file_reader(args.train_data_dir), buf_size=2000000),
            batch_size=args.batch_size)
294 295
        test_reader = paddle.batch(
            paddle.reader.shuffle(
296 297
                reader.file_reader(args.test_data_dir), buf_size=2000000),
            batch_size=args.batch_size)
298

299
        place = fluid.CUDAPlace(0) if args.device == 'GPU' else fluid.CPUPlace()
300 301 302 303 304 305
        feeder = fluid.DataFeeder(
            feed_list=[word, mention, target], place=place)

        exe = fluid.Executor(place)

        exe.run(startup)
306 307 308 309 310 311 312 313 314 315 316
        if args.parallel:
            train_exe = fluid.ParallelExecutor(
                loss_name=avg_cost.name, use_cuda=(args.device == 'GPU'))
            test_exe = fluid.ParallelExecutor(
                use_cuda=(args.device == 'GPU'),
                main_program=inference_program,
                share_vars_from=train_exe)
        else:
            train_exe = exe
            test_exe = exe

317
        batch_id = 0
318
        for pass_id in xrange(args.num_passes):
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
            chunk_evaluator.reset()
            train_reader_iter = train_reader()
            start_time = time.time()
            while True:
                try:
                    cur_batch = next(train_reader_iter)
                    cost, nums_infer, nums_label, nums_correct = train_exe.run(
                        fetch_list=[
                            avg_cost.name, num_infer_chunks.name,
                            num_label_chunks.name, num_correct_chunks.name
                        ],
                        feed=feeder.feed(cur_batch))
                    chunk_evaluator.update(
                        np.array(nums_infer).sum(),
                        np.array(nums_label).sum(),
                        np.array(nums_correct).sum())
                    cost_list = np.array(cost)
                    batch_id += 1
                except StopIteration:
                    break
            end_time = time.time()
J
jshower 已提交
340 341
            print("pass_id:" + str(pass_id) + ", time_cost:" + str(
                end_time - start_time) + "s")
342
            precision, recall, f1_score = chunk_evaluator.eval()
J
jshower 已提交
343 344
            print("[Train] precision:" + str(precision) + ", recall:" + str(
                recall) + ", f1:" + str(f1_score))
345 346 347
            p, r, f1 = test2(
                exe, chunk_evaluator, inference_program, test_reader, place,
                [num_infer_chunks, num_label_chunks, num_correct_chunks])
J
jshower 已提交
348 349
            print("[Test] precision:" + str(p) + ", recall:" + str(r) + ", f1:"
                  + str(f1))
350
            save_dirname = os.path.join(args.model_save_dir,
351
                                        "params_pass_%d" % pass_id)
352 353
            fluid.io.save_inference_model(save_dirname, ['word', 'mention'],
                                          [crf_decode], exe)
354 355 356


if __name__ == "__main__":
357 358 359
    args = parse_args()
    print_arguments(args)
    main(args)