train.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
import os
import math
import time

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import NormalInitializer

import reader


def load_reverse_dict(dict_path):
    return dict((idx, line.strip().split("\t")[0])
                for idx, line in enumerate(open(dict_path, "r").readlines()))


def to_lodtensor(data, place):
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.LoDTensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def ner_net(word_dict_len, label_dict_len):
    IS_SPARSE = False
    word_dim = 32
    mention_dict_len = 57
    mention_dim = 20
    grnn_hidden = 36
    emb_lr = 5
    init_bound = 0.1

    def _net_conf(word, mark, target):
        word_embedding = fluid.layers.embedding(
            input=word,
            size=[word_dict_len, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="word_emb",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        mention_embedding = fluid.layers.embedding(
            input=mention,
            size=[mention_dict_len, mention_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="mention_emb",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        word_embedding_r = fluid.layers.embedding(
            input=word,
            size=[word_dict_len, word_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="word_emb_r",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        mention_embedding_r = fluid.layers.embedding(
            input=mention,
            size=[mention_dict_len, mention_dim],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr=fluid.ParamAttr(
                learning_rate=emb_lr,
                name="mention_emb_r",
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound)))

        word_mention_vector = fluid.layers.concat(
            input=[word_embedding, mention_embedding], axis=1)

        word_mention_vector_r = fluid.layers.concat(
            input=[word_embedding_r, mention_embedding_r], axis=1)

        pre_gru = fluid.layers.fc(
            input=word_mention_vector,
            size=grnn_hidden * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru = fluid.layers.dynamic_gru(
            input=pre_gru,
            size=grnn_hidden,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        pre_gru_r = fluid.layers.fc(
            input=word_mention_vector_r,
            size=grnn_hidden * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru_r = fluid.layers.dynamic_gru(
            input=pre_gru_r,
            size=grnn_hidden,
            is_reverse=True,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        gru_merged = fluid.layers.concat(input=[gru, gru_r], axis=1)

        emission = fluid.layers.fc(
            size=label_dict_len,
            input=gru_merged,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        crf_cost = fluid.layers.linear_chain_crf(
            input=emission,
            label=target,
            param_attr=fluid.ParamAttr(
                name='crfw',
J
jshower 已提交
144
                learning_rate=0.2, ))
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        avg_cost = fluid.layers.mean(x=crf_cost)
        return avg_cost, emission

    word = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)
    mention = fluid.layers.data(
        name='mention', shape=[1], dtype='int64', lod_level=1)
    target = fluid.layers.data(
        name="target", shape=[1], dtype='int64', lod_level=1)

    avg_cost, emission = _net_conf(word, mention, target)

    return avg_cost, emission, word, mention, target


def test2(exe, chunk_evaluator, inference_program, test_data, place,
          cur_fetch_list):
    chunk_evaluator.reset()
    for data in test_data():
        word = to_lodtensor(map(lambda x: x[0], data), place)
        mention = to_lodtensor(map(lambda x: x[1], data), place)
        target = to_lodtensor(map(lambda x: x[2], data), place)
        result_list = exe.run(
            inference_program,
J
jshower 已提交
168 169 170
            feed={"word": word,
                  "mention": mention,
                  "target": target},
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            fetch_list=cur_fetch_list)
        number_infer = np.array(result_list[0])
        number_label = np.array(result_list[1])
        number_correct = np.array(result_list[2])
        chunk_evaluator.update(number_infer[0], number_label[0],
                               number_correct[0])
    return chunk_evaluator.eval()


def test(test_exe, chunk_evaluator, inference_program, test_data, place,
         cur_fetch_list):
    chunk_evaluator.reset()
    for data in test_data():
        word = to_lodtensor(map(lambda x: x[0], data), place)
        mention = to_lodtensor(map(lambda x: x[1], data), place)
        target = to_lodtensor(map(lambda x: x[2], data), place)
        result_list = test_exe.run(
            fetch_list=cur_fetch_list,
J
jshower 已提交
189 190 191
            feed={"word": word,
                  "mention": mention,
                  "target": target})
192 193 194
        number_infer = np.array(result_list[0])
        number_label = np.array(result_list[1])
        number_correct = np.array(result_list[2])
J
jshower 已提交
195 196
        chunk_evaluator.update(number_infer.sum(),
                               number_label.sum(), number_correct.sum())
197 198 199 200 201 202 203 204 205 206 207 208 209 210
    return chunk_evaluator.eval()


def main(train_data_file, test_data_file, model_save_dir, num_passes):
    if not os.path.exists(model_save_dir):
        os.mkdir(model_save_dir)

    BATCH_SIZE = 256
    word_dict_len = 1942563
    label_dict_len = 49

    main = fluid.Program()
    startup = fluid.Program()
    with fluid.program_guard(main, startup):
J
jshower 已提交
211 212
        avg_cost, feature_out, word, mention, target = ner_net(word_dict_len,
                                                               label_dict_len)
213 214

        crf_decode = fluid.layers.crf_decoding(
J
jshower 已提交
215
            input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
J
jshower 已提交
216 217 218

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
        sgd_optimizer.minimize(avg_cost)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

        (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
         num_correct_chunks) = fluid.layers.chunk_eval(
             input=crf_decode,
             label=target,
             chunk_scheme="IOB",
             num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))

        chunk_evaluator = fluid.metrics.ChunkEvaluator()

        inference_program = fluid.default_main_program().clone()
        with fluid.program_guard(inference_program):
            inference_program = fluid.io.get_inference_program(
                [num_infer_chunks, num_label_chunks, num_correct_chunks])

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                reader.file_reader(train_data_file), buf_size=2000000),
            batch_size=BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.reader.shuffle(
                reader.file_reader(test_data_file), buf_size=2000000),
            batch_size=BATCH_SIZE)

        place = fluid.CUDAPlace(0)
        feeder = fluid.DataFeeder(
            feed_list=[word, mention, target], place=place)

        exe = fluid.Executor(place)

        exe.run(startup)
        train_exe = fluid.ParallelExecutor(
            loss_name=avg_cost.name, use_cuda=True)
        test_exe = fluid.ParallelExecutor(
            use_cuda=True,
            main_program=inference_program,
            share_vars_from=train_exe)
        batch_id = 0
        for pass_id in xrange(num_passes):
            chunk_evaluator.reset()
            train_reader_iter = train_reader()
            start_time = time.time()
            while True:
                try:
                    cur_batch = next(train_reader_iter)
                    cost, nums_infer, nums_label, nums_correct = train_exe.run(
                        fetch_list=[
                            avg_cost.name, num_infer_chunks.name,
                            num_label_chunks.name, num_correct_chunks.name
                        ],
                        feed=feeder.feed(cur_batch))
                    chunk_evaluator.update(
                        np.array(nums_infer).sum(),
                        np.array(nums_label).sum(),
                        np.array(nums_correct).sum())
                    cost_list = np.array(cost)
                    batch_id += 1
                except StopIteration:
                    break
            end_time = time.time()
J
jshower 已提交
279 280
            print("pass_id:" + str(pass_id) + ", time_cost:" + str(
                end_time - start_time) + "s")
281
            precision, recall, f1_score = chunk_evaluator.eval()
J
jshower 已提交
282 283
            print("[Train] precision:" + str(precision) + ", recall:" + str(
                recall) + ", f1:" + str(f1_score))
284 285 286
            p, r, f1 = test2(
                exe, chunk_evaluator, inference_program, test_reader, place,
                [num_infer_chunks, num_label_chunks, num_correct_chunks])
J
jshower 已提交
287 288
            print("[Test] precision:" + str(p) + ", recall:" + str(r) + ", f1:"
                  + str(f1))
289 290
            save_dirname = os.path.join(model_save_dir,
                                        "params_pass_%d" % pass_id)
J
jshower 已提交
291 292
            fluid.io.save_inference_model(save_dirname, ['word', 'mention'],
                                          [crf_decode], exe)
293 294 295 296 297 298 299 300


if __name__ == "__main__":
    main(
        train_data_file="./data/train_files",
        test_data_file="./data/test_files",
        model_save_dir="./output",
        num_passes=1000)