gru.py 3.3 KB
Newer Older
王肖 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
gru class
"""

import paddle_layers as layers
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.dygraph import Layer
from paddle import fluid
import numpy as np

class GRU(Layer):
    """
    GRU
    """

    def __init__(self, conf_dict):
        """
        initialize
        """
        super(GRU, self).__init__()
        self.dict_size = conf_dict["dict_size"]
        self.task_mode = conf_dict["task_mode"]
        self.emb_dim = conf_dict["net"]["emb_dim"]
        self.gru_dim = conf_dict["net"]["gru_dim"]
        self.hidden_dim = conf_dict["net"]["hidden_dim"]
        self.emb_layer = layers.EmbeddingLayer(self.dict_size, self.emb_dim, "emb").ops()
       
        self.gru_layer = layers.DynamicGRULayer(self.gru_dim, "gru").ops()
        self.fc_layer = layers.FCLayer(self.hidden_dim, None, "fc").ops()
        self.proj_layer = Linear(input_dim = self.hidden_dim, output_dim=self.gru_dim*3)
        self.softmax_layer = layers.FCLayer(2, "softmax", "cos_sim").ops()
46
        self.seq_len=conf_dict["seq_len"]
王肖 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    def forward(self, left, right):
        """
        Forward network
        """
        # embedding layer
        left_emb = self.emb_layer(left)
        right_emb = self.emb_layer(right)
        # Presentation context
        left_emb = self.proj_layer(left_emb)
        right_emb = self.proj_layer(right_emb)

        h_0 = np.zeros((left_emb.shape[0], self.hidden_dim), dtype="float32")
        h_0 = to_variable(h_0)
        left_gru = self.gru_layer(left_emb, h_0=h_0)
        right_gru = self.gru_layer(right_emb, h_0=h_0)
        left_emb = fluid.layers.reduce_max(left_gru, dim=1)
        right_emb = fluid.layers.reduce_max(right_gru, dim=1)
        left_emb = fluid.layers.reshape(
            left_emb, shape=[-1, self.seq_len, self.hidden_dim])
        right_emb = fluid.layers.reshape(
            right_emb, shape=[-1, self.seq_len, self.hidden_dim])
        left_emb = fluid.layers.reduce_sum(left_emb, dim=1)
        right_emb = fluid.layers.reduce_sum(right_emb, dim=1)

        left_last = fluid.layers.tanh(left_emb)
        right_last = fluid.layers.tanh(right_emb)
        
        if self.task_mode == "pairwise":
            left_fc = self.fc_layer(left_last)
            right_fc = self.fc_layer(right_last)
            cos_sim_layer = layers.CosSimLayer()
            pred = cos_sim_layer.ops(left_fc, right_fc)
            return left_fc, pred
        else:
            concat_layer = layers.ConcatLayer(1)
            concat = concat_layer.ops([left_last, right_last])
            concat_fc = self.fc_layer(concat)
            pred = self.softmax_layer(concat_fc)
            return left_last, pred