model.py 10.0 KB
Newer Older
1 2 3 4
"""Contains DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
X
Xinghai Sun 已提交
5

6 7 8 9 10 11
import sys
import os
import time
import gzip
from decoder import *
from lm.lm_scorer import LmScorer
12
import paddle.v2 as paddle
13
from layer import *
14 15


16
class DeepSpeech2Model(object):
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
    """DeepSpeech2Model class.

    :param vocab_size: Decoding vocabulary size.
    :type vocab_size: int
    :param num_conv_layers: Number of stacking convolution layers.
    :type num_conv_layers: int
    :param num_rnn_layers: Number of stacking RNN layers.
    :type num_rnn_layers: int
    :param rnn_layer_size: RNN layer size (number of RNN cells).
    :type rnn_layer_size: int
    :param pretrained_model_path: Pretrained model path. If None, will train
                                  from stratch.
    :type pretrained_model_path: basestring|None
    """

32 33 34 35 36 37
    def __init__(self, vocab_size, num_conv_layers, num_rnn_layers,
                 rnn_layer_size, pretrained_model_path):
        self._create_network(vocab_size, num_conv_layers, num_rnn_layers,
                             rnn_layer_size)
        self._create_parameters(pretrained_model_path)
        self._inferer = None
38
        self._loss_inferer = None
39
        self._ext_scorer = None
40

41 42 43 44 45 46 47
    def train(self,
              train_batch_reader,
              dev_batch_reader,
              feeding_dict,
              learning_rate,
              gradient_clipping,
              num_passes,
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
              output_model_dir,
              num_iterations_print=100):
        """Train the model.

        :param train_batch_reader: Train data reader.
        :type train_batch_reader: callable
        :param dev_batch_reader: Validation data reader.
        :type dev_batch_reader: callable
        :param feeding_dict: Feeding is a map of field name and tuple index
                             of the data that reader returns.
        :type feeding_dict: dict|list
        :param learning_rate: Learning rate for ADAM optimizer.
        :type learning_rate: float
        :param gradient_clipping: Gradient clipping threshold.
        :type gradient_clipping: float
        :param num_passes: Number of training epochs.
        :type num_passes: int
        :param num_iterations_print: Number of training iterations for printing
                                     a training loss.
        :type rnn_iteratons_print: int
        :param output_model_dir: Directory for saving the model (every pass).
        :type output_model_dir: basestring
        """
        # prepare model output directory
        if not os.path.exists(output_model_dir):
            os.mkdir(output_model_dir)

75 76 77 78 79 80 81 82
        # prepare optimizer and trainer
        optimizer = paddle.optimizer.Adam(
            learning_rate=learning_rate,
            gradient_clipping_threshold=gradient_clipping)
        trainer = paddle.trainer.SGD(
            cost=self._loss,
            parameters=self._parameters,
            update_equation=optimizer)
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        # create event handler
        def event_handler(event):
            global start_time, cost_sum, cost_counter
            if isinstance(event, paddle.event.EndIteration):
                cost_sum += event.cost
                cost_counter += 1
                if (event.batch_id + 1) % num_iterations_print == 0:
                    output_model_path = os.path.join(output_model_dir,
                                                     "params.latest.tar.gz")
                    with gzip.open(output_model_path, 'w') as f:
                        self._parameters.to_tar(f)
                    print("\nPass: %d, Batch: %d, TrainCost: %f" %
                          (event.pass_id, event.batch_id + 1,
                           cost_sum / cost_counter))
                    cost_sum, cost_counter = 0.0, 0
                else:
                    sys.stdout.write('.')
                    sys.stdout.flush()
            if isinstance(event, paddle.event.BeginPass):
                start_time = time.time()
                cost_sum, cost_counter = 0.0, 0
            if isinstance(event, paddle.event.EndPass):
                result = trainer.test(
                    reader=dev_batch_reader, feeding=feeding_dict)
                output_model_path = os.path.join(
                    output_model_dir, "params.pass-%d.tar.gz" % event.pass_id)
                with gzip.open(output_model_path, 'w') as f:
                    self._parameters.to_tar(f)
                print("\n------- Time: %d sec,  Pass: %d, ValidationCost: %s" %
                      (time.time() - start_time, event.pass_id, result.cost))
114

115 116 117 118 119 120
        # run train
        trainer.train(
            reader=train_batch_reader,
            event_handler=event_handler,
            num_passes=num_passes,
            feeding=feeding_dict)
121

122
    def infer_loss_batch(self, infer_data):
123 124 125 126 127 128 129 130 131 132
        """Model inference. Infer the ctc loss for a batch of speech
        utterances.

        :param infer_data: List of utterances to infer, with each utterance a
                           tuple of audio features and transcription text (empty
                           string).
        :type infer_data: list
        :return: List of ctc loss.
        :rtype: List of float
        """
133 134 135 136 137 138 139
        # define inferer
        if self._loss_inferer == None:
            self._loss_inferer = paddle.inference.Inference(
                output_layer=self._loss, parameters=self._parameters)
        # run inference
        return self._loss_inferer.infer(input=infer_data)

140 141 142
    def infer_batch(self, infer_data, decode_method, beam_alpha, beam_beta,
                    beam_size, cutoff_prob, vocab_list, language_model_path,
                    num_processes):
143 144 145
        """Model inference. Infer the transcription for a batch of speech
        utterances.

146 147 148
        :param infer_data: List of utterances to infer, with each utterance
                           consisting of a tuple of audio features and
                           transcription text (empty string).
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        :type infer_data: list
        :param decode_method: Decoding method name, 'best_path' or
                              'beam search'.
        :param decode_method: string
        :param beam_alpha: Parameter associated with language model.
        :type beam_alpha: float
        :param beam_beta: Parameter associated with word count.
        :type beam_beta: float
        :param beam_size: Width for Beam search.
        :type beam_size: int
        :param cutoff_prob: Cutoff probability in pruning,
                            default 1.0, no pruning.
        :type cutoff_prob: float
        :param vocab_list: List of tokens in the vocabulary, for decoding.
        :type vocab_list: list
        :param language_model_path: Filepath for language model.
        :type language_model_path: basestring|None
        :param num_processes: Number of processes (CPU) for decoder.
        :type num_processes: int
        :return: List of transcription texts.
        :rtype: List of basestring
        """
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        # define inferer
        if self._inferer == None:
            self._inferer = paddle.inference.Inference(
                output_layer=self._log_probs, parameters=self._parameters)
        # run inference
        infer_results = self._inferer.infer(input=infer_data)
        num_steps = len(infer_results) // len(infer_data)
        probs_split = [
            infer_results[i * num_steps:(i + 1) * num_steps]
            for i in xrange(0, len(infer_data))
        ]
        # run decoder
        results = []
        if decode_method == "best_path":
            # best path decode
            for i, probs in enumerate(probs_split):
                output_transcription = ctc_best_path_decoder(
                    probs_seq=probs, vocabulary=data_generator.vocab_list)
                results.append(output_transcription)
        elif decode_method == "beam_search":
            # initialize external scorer
            if self._ext_scorer == None:
                self._ext_scorer = LmScorer(beam_alpha, beam_beta,
                                            language_model_path)
                self._loaded_lm_path = language_model_path
            else:
                self._ext_scorer.reset_params(beam_alpha, beam_beta)
                assert self._loaded_lm_path == language_model_path
199

200 201 202 203 204 205 206 207 208
            # beam search decode
            beam_search_results = ctc_beam_search_decoder_batch(
                probs_split=probs_split,
                vocabulary=vocab_list,
                beam_size=beam_size,
                blank_id=len(vocab_list),
                num_processes=num_processes,
                ext_scoring_func=self._ext_scorer,
                cutoff_prob=cutoff_prob)
209

210 211 212 213 214
            results = [result[0][1] for result in beam_search_results]
        else:
            raise ValueError("Decoding method [%s] is not supported." %
                             decode_method)
        return results
215

216
    def _create_parameters(self, model_path=None):
217
        """Load or create model parameters."""
218 219 220 221 222
        if model_path is None:
            self._parameters = paddle.parameters.create(self._loss)
        else:
            self._parameters = paddle.parameters.Parameters.from_tar(
                gzip.open(model_path))
223

224 225
    def _create_network(self, vocab_size, num_conv_layers, num_rnn_layers,
                        rnn_layer_size):
226
        """Create data layers and model network."""
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        # paddle.data_type.dense_array is used for variable batch input.
        # The size 161 * 161 is only an placeholder value and the real shape
        # of input batch data will be induced during training.
        audio_data = paddle.layer.data(
            name="audio_spectrogram",
            type=paddle.data_type.dense_array(161 * 161))
        text_data = paddle.layer.data(
            name="transcript_text",
            type=paddle.data_type.integer_value_sequence(vocab_size))
        self._log_probs, self._loss = deep_speech2(
            audio_data=audio_data,
            text_data=text_data,
            dict_size=vocab_size,
            num_conv_layers=num_conv_layers,
            num_rnn_layers=num_rnn_layers,
            rnn_size=rnn_layer_size)