kitti_rcnn_reader.py 50.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
This code is based on https://github.com/sshaoshuai/PointRCNN/blob/master/lib/datasets/kitti_rcnn_dataset.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import logging
import multiprocessing
import numpy as np
import scipy
from scipy.spatial import Delaunay
try:
    import cPickle as pickle
except:
    import pickle

import pts_utils
import utils.cyops.kitti_utils as kitti_utils
import utils.cyops.roipool3d_utils as roipool3d_utils
from data.kitti_dataset import KittiDataset
from utils.config import cfg
from collections import OrderedDict

__all__ = ["KittiRCNNReader"]

logger = logging.getLogger(__name__)


def has_empty(data):
    for d in data:
        if isinstance(d, np.ndarray) and len(d) == 0:
            return True
    return False


def in_hull(p, hull):
    """
    :param p: (N, K) test points
    :param hull: (M, K) M corners of a box
    :return (N) bool
    """
    try:
        if not isinstance(hull, Delaunay):
            hull = Delaunay(hull)
        flag = hull.find_simplex(p) >= 0
    except scipy.spatial.qhull.QhullError:
        logger.debug('Warning: not a hull.')
        flag = np.zeros(p.shape[0], dtype=np.bool)

    return flag


class KittiRCNNReader(KittiDataset):
    def __init__(self, data_dir, npoints=16384, split='train', classes='Car', mode='TRAIN',
                 random_select=True, rcnn_training_roi_dir=None, rcnn_training_feature_dir=None,
                 rcnn_eval_roi_dir=None, rcnn_eval_feature_dir=None, gt_database_dir=None):
        super(KittiRCNNReader, self).__init__(data_dir=data_dir, split=split)
        if classes == 'Car':
            self.classes = ('Background', 'Car')
            aug_scene_data_dir = os.path.join(data_dir, 'KITTI', 'aug_scene')
        elif classes == 'People':
            self.classes = ('Background', 'Pedestrian', 'Cyclist')
        elif classes == 'Pedestrian':
            self.classes = ('Background', 'Pedestrian')
            aug_scene_data_dir = os.path.join(data_dir, 'KITTI', 'aug_scene_ped')
        elif classes == 'Cyclist':
            self.classes = ('Background', 'Cyclist')
            aug_scene_data_dir = os.path.join(data_dir, 'KITTI', 'aug_scene_cyclist')
        else:
            assert False, "Invalid classes: %s" % classes

        self.num_classes = len(self.classes)

        self.npoints = npoints
        self.sample_id_list = []
        self.random_select = random_select

        if split == 'train_aug':
            self.aug_label_dir = os.path.join(aug_scene_data_dir, 'training', 'aug_label')
            self.aug_pts_dir = os.path.join(aug_scene_data_dir, 'training', 'rectified_data')
        else:
            self.aug_label_dir = os.path.join(aug_scene_data_dir, 'training', 'aug_label')
            self.aug_pts_dir = os.path.join(aug_scene_data_dir, 'training', 'rectified_data')

        # for rcnn training
        self.rcnn_training_bbox_list = []
        self.rpn_feature_list = {}
        self.pos_bbox_list = []
        self.neg_bbox_list = []
        self.far_neg_bbox_list = []
        self.rcnn_eval_roi_dir = rcnn_eval_roi_dir
        self.rcnn_eval_feature_dir = rcnn_eval_feature_dir
        self.rcnn_training_roi_dir = rcnn_training_roi_dir
        self.rcnn_training_feature_dir = rcnn_training_feature_dir

        self.gt_database = None

        if not self.random_select:
            logger.warning('random select is False')

        assert mode in ['TRAIN', 'EVAL', 'TEST'], 'Invalid mode: %s' % mode
        self.mode = mode

        if cfg.RPN.ENABLED:
            if gt_database_dir is not None:
                self.gt_database = pickle.load(open(gt_database_dir, 'rb'))

                if cfg.GT_AUG_HARD_RATIO > 0:
                    easy_list, hard_list = [], []
                    for k in range(self.gt_database.__len__()):
                        obj = self.gt_database[k]
                        if obj['points'].shape[0] > 100:
                            easy_list.append(obj)
                        else:
                            hard_list.append(obj)
                    self.gt_database = [easy_list, hard_list]
                    logger.info('Loading gt_database(easy(pt_num>100): %d, hard(pt_num<=100): %d) from %s'
                                % (len(easy_list), len(hard_list), gt_database_dir))
                else:
                    logger.info('Loading gt_database(%d) from %s' % (len(self.gt_database), gt_database_dir))

            if mode == 'TRAIN':
                self.preprocess_rpn_training_data()
            else:
                self.sample_id_list = [int(sample_id) for sample_id in self.image_idx_list]
                logger.info('Load testing samples from %s' % self.imageset_dir)
                logger.info('Done: total test samples %d' % len(self.sample_id_list))
        elif cfg.RCNN.ENABLED:
            for idx in range(0, self.num_sample):
                sample_id = int(self.image_idx_list[idx])
                obj_list = self.filtrate_objects(self.get_label(sample_id))
                if len(obj_list) == 0:
                    # logger.info('No gt classes: %06d' % sample_id)
                    continue
                self.sample_id_list.append(sample_id)

            logger.info('Done: filter %s results for rcnn training: %d / %d\n' %
                  (self.mode, len(self.sample_id_list), len(self.image_idx_list)))

    def preprocess_rpn_training_data(self):
        """
        Discard samples which don't have current classes, which will not be used for training.
        Valid sample_id is stored in self.sample_id_list
        """
        logger.info('Loading %s samples from %s ...' % (self.mode, self.label_dir))
        for idx in range(0, self.num_sample):
            sample_id = int(self.image_idx_list[idx])
            obj_list = self.filtrate_objects(self.get_label(sample_id))
            if len(obj_list) == 0:
                logger.debug('No gt classes: %06d' % sample_id)
                continue
            self.sample_id_list.append(sample_id)

        logger.info('Done: filter %s results: %d / %d\n' % (self.mode, len(self.sample_id_list),
                                                                 len(self.image_idx_list)))

    def get_label(self, idx):
        if idx < 10000:
            label_file = os.path.join(self.label_dir, '%06d.txt' % idx)
        else:
            label_file = os.path.join(self.aug_label_dir, '%06d.txt' % idx)

        assert os.path.exists(label_file)
        return kitti_utils.get_objects_from_label(label_file)

    def get_image(self, idx):
        return super(KittiRCNNReader, self).get_image(idx % 10000)

    def get_image_shape(self, idx):
        return super(KittiRCNNReader, self).get_image_shape(idx % 10000)

    def get_calib(self, idx):
        return super(KittiRCNNReader, self).get_calib(idx % 10000)

    def get_road_plane(self, idx):
        return super(KittiRCNNReader, self).get_road_plane(idx % 10000)

    @staticmethod
    def get_rpn_features(rpn_feature_dir, idx):
        rpn_feature_file = os.path.join(rpn_feature_dir, '%06d.npy' % idx)
        rpn_xyz_file = os.path.join(rpn_feature_dir, '%06d_xyz.npy' % idx)
        rpn_intensity_file = os.path.join(rpn_feature_dir, '%06d_intensity.npy' % idx)
        if cfg.RCNN.USE_SEG_SCORE:
            rpn_seg_file = os.path.join(rpn_feature_dir, '%06d_rawscore.npy' % idx)
            rpn_seg_score = np.load(rpn_seg_file).reshape(-1)
            rpn_seg_score = torch.sigmoid(torch.from_numpy(rpn_seg_score)).numpy()
        else:
            rpn_seg_file = os.path.join(rpn_feature_dir, '%06d_seg.npy' % idx)
            rpn_seg_score = np.load(rpn_seg_file).reshape(-1)
        return np.load(rpn_xyz_file), np.load(rpn_feature_file), np.load(rpn_intensity_file).reshape(-1), rpn_seg_score

    def filtrate_objects(self, obj_list):
        """
        Discard objects which are not in self.classes (or its similar classes)
        :param obj_list: list
        :return: list
        """
        type_whitelist = self.classes
        if self.mode == 'TRAIN' and cfg.INCLUDE_SIMILAR_TYPE:
            type_whitelist = list(self.classes)
            if 'Car' in self.classes:
                type_whitelist.append('Van')
            if 'Pedestrian' in self.classes:  # or 'Cyclist' in self.classes:
                type_whitelist.append('Person_sitting')

        valid_obj_list = []
        for obj in obj_list:
            if obj.cls_type not in type_whitelist:  # rm Van, 20180928
                continue
            if self.mode == 'TRAIN' and cfg.PC_REDUCE_BY_RANGE and (self.check_pc_range(obj.pos) is False):
                continue
            valid_obj_list.append(obj)
        return valid_obj_list

    @staticmethod
    def filtrate_dc_objects(obj_list):
        valid_obj_list = []
        for obj in obj_list:
            if obj.cls_type in ['DontCare']:
                continue
            valid_obj_list.append(obj)

        return valid_obj_list

    @staticmethod
    def check_pc_range(xyz):
        """
        :param xyz: [x, y, z]
        :return:
        """
        x_range, y_range, z_range = cfg.PC_AREA_SCOPE
        if (x_range[0] <= xyz[0] <= x_range[1]) and (y_range[0] <= xyz[1] <= y_range[1]) and \
                (z_range[0] <= xyz[2] <= z_range[1]):
            return True
        return False

    @staticmethod
    def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape):
        """
        Valid point should be in the image (and in the PC_AREA_SCOPE)
        :param pts_rect:
        :param pts_img:
        :param pts_rect_depth:
        :param img_shape:
        :return:
        """
        val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1])
        val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0])
        val_flag_merge = np.logical_and(val_flag_1, val_flag_2)
        pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0)

        if cfg.PC_REDUCE_BY_RANGE:
            x_range, y_range, z_range = cfg.PC_AREA_SCOPE
            pts_x, pts_y, pts_z = pts_rect[:, 0], pts_rect[:, 1], pts_rect[:, 2]
            range_flag = (pts_x >= x_range[0]) & (pts_x <= x_range[1]) \
                         & (pts_y >= y_range[0]) & (pts_y <= y_range[1]) \
                         & (pts_z >= z_range[0]) & (pts_z <= z_range[1])
            pts_valid_flag = pts_valid_flag & range_flag
        return pts_valid_flag

    def get_rpn_sample(self, index):
        sample_id = int(self.sample_id_list[index])
        if sample_id < 10000:
            calib = self.get_calib(sample_id)
            # img = self.get_image(sample_id)
            img_shape = self.get_image_shape(sample_id)
            pts_lidar = self.get_lidar(sample_id)

            # get valid point (projected points should be in image)
            pts_rect = calib.lidar_to_rect(pts_lidar[:, 0:3])
            pts_intensity = pts_lidar[:, 3]
        else:
            calib = self.get_calib(sample_id % 10000)
            # img = self.get_image(sample_id % 10000)
            img_shape = self.get_image_shape(sample_id % 10000)

            pts_file = os.path.join(self.aug_pts_dir, '%06d.bin' % sample_id)
            assert os.path.exists(pts_file), '%s' % pts_file
            aug_pts = np.fromfile(pts_file, dtype=np.float32).reshape(-1, 4)
            pts_rect, pts_intensity = aug_pts[:, 0:3], aug_pts[:, 3]

        pts_img, pts_rect_depth = calib.rect_to_img(pts_rect)
        pts_valid_flag = self.get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape)

        pts_rect = pts_rect[pts_valid_flag][:, 0:3]
        pts_intensity = pts_intensity[pts_valid_flag]

        if cfg.GT_AUG_ENABLED and self.mode == 'TRAIN':
            # all labels for checking overlapping
            all_gt_obj_list = self.filtrate_dc_objects(self.get_label(sample_id))
            all_gt_boxes3d = kitti_utils.objs_to_boxes3d(all_gt_obj_list)

            gt_aug_flag = False
            if np.random.rand() < cfg.GT_AUG_APPLY_PROB:
                # augment one scene
                gt_aug_flag, pts_rect, pts_intensity, extra_gt_boxes3d, extra_gt_obj_list = \
                    self.apply_gt_aug_to_one_scene(sample_id, pts_rect, pts_intensity, all_gt_boxes3d)

        # generate inputs
        if self.mode == 'TRAIN' or self.random_select:
            if self.npoints < len(pts_rect):
                pts_depth = pts_rect[:, 2]
                pts_near_flag = pts_depth < 40.0
                far_idxs_choice = np.where(pts_near_flag == 0)[0]
                near_idxs = np.where(pts_near_flag == 1)[0]
                near_idxs_choice = np.random.choice(near_idxs, self.npoints - len(far_idxs_choice), replace=False)

                choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \
                    if len(far_idxs_choice) > 0 else near_idxs_choice
                np.random.shuffle(choice)
            else:
                choice = np.arange(0, len(pts_rect), dtype=np.int32)
                if self.npoints > len(pts_rect):
                    extra_choice = np.random.choice(choice, self.npoints - len(pts_rect), replace=False)
                    choice = np.concatenate((choice, extra_choice), axis=0)
                np.random.shuffle(choice)

            ret_pts_rect = pts_rect[choice, :]
            ret_pts_intensity = pts_intensity[choice] - 0.5  # translate intensity to [-0.5, 0.5]
        else:
            ret_pts_rect = np.zeros((self.npoints, pts_rect.shape[1])).astype(pts_rect.dtype)
            num_ = min(self.npoints, pts_rect.shape[0])
            ret_pts_rect[:num_] = pts_rect[:num_]

            ret_pts_intensity = pts_intensity - 0.5

        pts_features = [ret_pts_intensity.reshape(-1, 1)]
        ret_pts_features = np.concatenate(pts_features, axis=1) if pts_features.__len__() > 1 else pts_features[0]

        sample_info = {'sample_id': sample_id, 'random_select': self.random_select}

        if self.mode == 'TEST':
            if cfg.RPN.USE_INTENSITY:
                pts_input = np.concatenate((ret_pts_rect, ret_pts_features), axis=1)  # (N, C)
            else:
                pts_input = ret_pts_rect
            sample_info['pts_input'] = pts_input
            sample_info['pts_rect'] = ret_pts_rect
            sample_info['pts_features'] = ret_pts_features
            return sample_info

        gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
        if cfg.GT_AUG_ENABLED and self.mode == 'TRAIN' and gt_aug_flag:
            gt_obj_list.extend(extra_gt_obj_list)
        gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list)

        gt_alpha = np.zeros((gt_obj_list.__len__()), dtype=np.float32)
        for k, obj in enumerate(gt_obj_list):
            gt_alpha[k] = obj.alpha

        # data augmentation
        aug_pts_rect = ret_pts_rect.copy()
        aug_gt_boxes3d = gt_boxes3d.copy()
        if cfg.AUG_DATA and self.mode == 'TRAIN':
            aug_pts_rect, aug_gt_boxes3d, aug_method = self.data_augmentation(aug_pts_rect, aug_gt_boxes3d, gt_alpha,
                                                                              sample_id)
            sample_info['aug_method'] = aug_method

        # prepare input
        if cfg.RPN.USE_INTENSITY:
            pts_input = np.concatenate((aug_pts_rect, ret_pts_features), axis=1)  # (N, C)
        else:
            pts_input = aug_pts_rect

        if cfg.RPN.FIXED:
            sample_info['pts_input'] = pts_input
            sample_info['pts_rect'] = aug_pts_rect
            sample_info['pts_features'] = ret_pts_features
            sample_info['gt_boxes3d'] = aug_gt_boxes3d
            return sample_info

        if self.mode == 'EVAL' and aug_gt_boxes3d.shape[0] == 0:
            aug_gt_boxes3d = np.zeros((1, aug_gt_boxes3d.shape[1]))

        # generate training labels
        rpn_cls_label, rpn_reg_label = self.generate_rpn_training_labels(aug_pts_rect, aug_gt_boxes3d)
        sample_info['pts_input'] = pts_input
        sample_info['pts_rect'] = aug_pts_rect
        sample_info['pts_features'] = ret_pts_features
        sample_info['rpn_cls_label'] = rpn_cls_label
        sample_info['rpn_reg_label'] = rpn_reg_label
        sample_info['gt_boxes3d'] = aug_gt_boxes3d
        return sample_info

    def apply_gt_aug_to_one_scene(self, sample_id, pts_rect, pts_intensity, all_gt_boxes3d):
        """
        :param pts_rect: (N, 3)
        :param all_gt_boxex3d: (M2, 7)
        :return:
        """
        assert self.gt_database is not None
        # extra_gt_num = np.random.randint(10, 15)
        # try_times = 50
        if cfg.GT_AUG_RAND_NUM:
            extra_gt_num = np.random.randint(10, cfg.GT_EXTRA_NUM)
        else:
            extra_gt_num = cfg.GT_EXTRA_NUM
        try_times = 100
        cnt = 0
        cur_gt_boxes3d = all_gt_boxes3d.copy()
        cur_gt_boxes3d[:, 4] += 0.5  # TODO: consider different objects
        cur_gt_boxes3d[:, 5] += 0.5  # enlarge new added box to avoid too nearby boxes
        cur_gt_corners = kitti_utils.boxes3d_to_corners3d(cur_gt_boxes3d)

        extra_gt_obj_list = []
        extra_gt_boxes3d_list = []
        new_pts_list, new_pts_intensity_list = [], []
        src_pts_flag = np.ones(pts_rect.shape[0], dtype=np.int32)

        road_plane = self.get_road_plane(sample_id)
        a, b, c, d = road_plane

        while try_times > 0:
            if cnt > extra_gt_num:
                break

            try_times -= 1
            if cfg.GT_AUG_HARD_RATIO > 0:
                p = np.random.rand()
                if p > cfg.GT_AUG_HARD_RATIO:
                    # use easy sample
                    rand_idx = np.random.randint(0, len(self.gt_database[0]))
                    new_gt_dict = self.gt_database[0][rand_idx]
                else:
                    # use hard sample
                    rand_idx = np.random.randint(0, len(self.gt_database[1]))
                    new_gt_dict = self.gt_database[1][rand_idx]
            else:
                rand_idx = np.random.randint(0, self.gt_database.__len__())
                new_gt_dict = self.gt_database[rand_idx]

            new_gt_box3d = new_gt_dict['gt_box3d'].copy()
            new_gt_points = new_gt_dict['points'].copy()
            new_gt_intensity = new_gt_dict['intensity'].copy()
            new_gt_obj = new_gt_dict['obj']
            center = new_gt_box3d[0:3]
            if cfg.PC_REDUCE_BY_RANGE and (self.check_pc_range(center) is False):
                continue

            if new_gt_points.__len__() < 5:  # too few points
                continue

            # put it on the road plane
            cur_height = (-d - a * center[0] - c * center[2]) / b
            move_height = new_gt_box3d[1] - cur_height
            new_gt_box3d[1] -= move_height
            new_gt_points[:, 1] -= move_height
            new_gt_obj.pos[1] -= move_height

            new_enlarged_box3d = new_gt_box3d.copy()
            new_enlarged_box3d[4] += 0.5
            new_enlarged_box3d[5] += 0.5  # enlarge new added box to avoid too nearby boxes

            cnt += 1
            new_corners = kitti_utils.boxes3d_to_corners3d(new_enlarged_box3d.reshape(1, 7))
            iou3d = kitti_utils.get_iou3d(new_corners, cur_gt_corners)
            valid_flag = iou3d.max() < 1e-8
            if not valid_flag:
                continue

            enlarged_box3d = new_gt_box3d.copy()
            enlarged_box3d[3] += 2  # remove the points above and below the object

            boxes_pts_mask_list = pts_utils.pts_in_boxes3d(pts_rect,
                    enlarged_box3d.reshape(1, 7))
            pt_mask_flag = (boxes_pts_mask_list[0] == 1)
            src_pts_flag[pt_mask_flag] = 0  # remove the original points which are inside the new box

            new_pts_list.append(new_gt_points)
            new_pts_intensity_list.append(new_gt_intensity)
            cur_gt_boxes3d = np.concatenate((cur_gt_boxes3d, new_enlarged_box3d.reshape(1, 7)), axis=0)
            cur_gt_corners = np.concatenate((cur_gt_corners, new_corners), axis=0)
            extra_gt_boxes3d_list.append(new_gt_box3d.reshape(1, 7))
            extra_gt_obj_list.append(new_gt_obj)

        if new_pts_list.__len__() == 0:
            return False, pts_rect, pts_intensity, None, None

        extra_gt_boxes3d = np.concatenate(extra_gt_boxes3d_list, axis=0)
        # remove original points and add new points
        pts_rect = pts_rect[src_pts_flag == 1]
        pts_intensity = pts_intensity[src_pts_flag == 1]
        new_pts_rect = np.concatenate(new_pts_list, axis=0)
        new_pts_intensity = np.concatenate(new_pts_intensity_list, axis=0)
        pts_rect = np.concatenate((pts_rect, new_pts_rect), axis=0)
        pts_intensity = np.concatenate((pts_intensity, new_pts_intensity), axis=0)

        return True, pts_rect, pts_intensity, extra_gt_boxes3d, extra_gt_obj_list

    def rotate_box3d_along_y(self, box3d, rot_angle):
        old_x, old_z, ry = box3d[0], box3d[2], box3d[6]
        old_beta = np.arctan2(old_z, old_x)
        alpha = -np.sign(old_beta) * np.pi / 2 + old_beta + ry
        box3d = kitti_utils.rotate_pc_along_y(box3d.reshape(1, 7), rot_angle=rot_angle)[0]
        new_x, new_z = box3d[0], box3d[2]
        new_beta = np.arctan2(new_z, new_x)
        box3d[6] = np.sign(new_beta) * np.pi / 2 + alpha - new_beta
        return box3d

    def data_augmentation(self, aug_pts_rect, aug_gt_boxes3d, gt_alpha, sample_id=None, mustaug=False, stage=1):
        """
        :param aug_pts_rect: (N, 3)
        :param aug_gt_boxes3d: (N, 7)
        :param gt_alpha: (N)
        :return:
        """
        aug_list = cfg.AUG_METHOD_LIST
        aug_enable = 1 - np.random.rand(3)
        if mustaug is True:
            aug_enable[0] = -1
            aug_enable[1] = -1
        aug_method = []
        if 'rotation' in aug_list and aug_enable[0] < cfg.AUG_METHOD_PROB[0]:
            angle = np.random.uniform(-np.pi / cfg.AUG_ROT_RANGE, np.pi / cfg.AUG_ROT_RANGE)
            aug_pts_rect = kitti_utils.rotate_pc_along_y(aug_pts_rect, rot_angle=angle)
            if stage == 1:
                # xyz change, hwl unchange
                aug_gt_boxes3d = kitti_utils.rotate_pc_along_y(aug_gt_boxes3d, rot_angle=angle)

                # calculate the ry after rotation
                x, z = aug_gt_boxes3d[:, 0], aug_gt_boxes3d[:, 2]
                beta = np.arctan2(z, x)
                new_ry = np.sign(beta) * np.pi / 2 + gt_alpha - beta
                aug_gt_boxes3d[:, 6] = new_ry  # TODO: not in [-np.pi / 2, np.pi / 2]
            elif stage == 2:
                # for debug stage-2, this implementation has little float precision difference with the above one
                assert aug_gt_boxes3d.shape[0] == 2
                aug_gt_boxes3d[0] = self.rotate_box3d_along_y(aug_gt_boxes3d[0], angle)
                aug_gt_boxes3d[1] = self.rotate_box3d_along_y(aug_gt_boxes3d[1], angle)
            else:
                raise NotImplementedError

            aug_method.append(['rotation', angle])

        if 'scaling' in aug_list and aug_enable[1] < cfg.AUG_METHOD_PROB[1]:
            scale = np.random.uniform(0.95, 1.05)
            aug_pts_rect = aug_pts_rect * scale
            aug_gt_boxes3d[:, 0:6] = aug_gt_boxes3d[:, 0:6] * scale
            aug_method.append(['scaling', scale])

        if 'flip' in aug_list and aug_enable[2] < cfg.AUG_METHOD_PROB[2]:
            # flip horizontal
            aug_pts_rect[:, 0] = -aug_pts_rect[:, 0]
            aug_gt_boxes3d[:, 0] = -aug_gt_boxes3d[:, 0]
            # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry
            if stage == 1:
                aug_gt_boxes3d[:, 6] = np.sign(aug_gt_boxes3d[:, 6]) * np.pi - aug_gt_boxes3d[:, 6]
            elif stage == 2:
                assert aug_gt_boxes3d.shape[0] == 2
                aug_gt_boxes3d[0, 6] = np.sign(aug_gt_boxes3d[0, 6]) * np.pi - aug_gt_boxes3d[0, 6]
                aug_gt_boxes3d[1, 6] = np.sign(aug_gt_boxes3d[1, 6]) * np.pi - aug_gt_boxes3d[1, 6]
            else:
                raise NotImplementedError

            aug_method.append('flip')

        return aug_pts_rect, aug_gt_boxes3d, aug_method

    @staticmethod
    def generate_rpn_training_labels(pts_rect, gt_boxes3d):
        cls_label = np.zeros((pts_rect.shape[0]), dtype=np.int32)
        reg_label = np.zeros((pts_rect.shape[0], 7), dtype=np.float32)  # dx, dy, dz, ry, h, w, l
        gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d, rotate=True)
        extend_gt_boxes3d = kitti_utils.enlarge_box3d(gt_boxes3d, extra_width=0.2)
        extend_gt_corners = kitti_utils.boxes3d_to_corners3d(extend_gt_boxes3d, rotate=True)
        for k in range(gt_boxes3d.shape[0]):
            box_corners = gt_corners[k]
            fg_pt_flag = in_hull(pts_rect, box_corners)
            fg_pts_rect = pts_rect[fg_pt_flag]
            cls_label[fg_pt_flag] = 1

            # enlarge the bbox3d, ignore nearby points
            extend_box_corners = extend_gt_corners[k]
            fg_enlarge_flag = in_hull(pts_rect, extend_box_corners)
            ignore_flag = np.logical_xor(fg_pt_flag, fg_enlarge_flag)
            cls_label[ignore_flag] = -1

            # pixel offset of object center
            center3d = gt_boxes3d[k][0:3].copy()  # (x, y, z)
            center3d[1] -= gt_boxes3d[k][3] / 2
            reg_label[fg_pt_flag, 0:3] = center3d - fg_pts_rect  # Now y is the true center of 3d box 20180928

            # size and angle encoding
            reg_label[fg_pt_flag, 3] = gt_boxes3d[k][3]  # h
            reg_label[fg_pt_flag, 4] = gt_boxes3d[k][4]  # w
            reg_label[fg_pt_flag, 5] = gt_boxes3d[k][5]  # l
            reg_label[fg_pt_flag, 6] = gt_boxes3d[k][6]  # ry

        return cls_label, reg_label

    def get_rcnn_sample_jit(self, index):
        sample_id = int(self.sample_id_list[index])
        rpn_xyz, rpn_features, rpn_intensity, seg_mask = \
            self.get_rpn_features(self.rcnn_training_feature_dir, sample_id)

        # load rois and gt_boxes3d for this sample
        roi_file = os.path.join(self.rcnn_training_roi_dir, '%06d.txt' % sample_id)
        roi_obj_list = kitti_utils.get_objects_from_label(roi_file)
        roi_boxes3d = kitti_utils.objs_to_boxes3d(roi_obj_list)
        # roi_scores is not used currently
        # roi_scores = kitti_utils.objs_to_scores(roi_obj_list)

        gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
        gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list)
        sample_info = OrderedDict()
        sample_info["sample_id"] = sample_id
        sample_info['rpn_xyz'] = rpn_xyz
        sample_info['rpn_features'] = rpn_features
        sample_info['rpn_intensity'] = rpn_intensity
        sample_info['seg_mask'] = seg_mask
        sample_info['roi_boxes3d'] = roi_boxes3d
        sample_info['pts_depth'] = np.linalg.norm(rpn_xyz, ord=2, axis=1)
        sample_info['gt_boxes3d'] = gt_boxes3d

        return sample_info

    def sample_bg_inds(self, hard_bg_inds, easy_bg_inds, bg_rois_per_this_image):
        if hard_bg_inds.size > 0 and easy_bg_inds.size > 0:
            hard_bg_rois_num = int(bg_rois_per_this_image * cfg.RCNN.HARD_BG_RATIO)
            easy_bg_rois_num = bg_rois_per_this_image - hard_bg_rois_num

            # sampling hard bg
            rand_num = np.floor(np.random.rand(hard_bg_rois_num) * hard_bg_inds.size).astype(np.int32)
            hard_bg_inds = hard_bg_inds[rand_num]
            # sampling easy bg
            rand_num = np.floor(np.random.rand(easy_bg_rois_num) * easy_bg_inds.size).astype(np.int32)
            easy_bg_inds = easy_bg_inds[rand_num]

            bg_inds = np.concatenate([hard_bg_inds, easy_bg_inds], axis=0)
        elif hard_bg_inds.size > 0 and easy_bg_inds.size == 0:
            hard_bg_rois_num = bg_rois_per_this_image
            # sampling hard bg
            rand_num = np.floor(np.random.rand(hard_bg_rois_num) * hard_bg_inds.size).astype(np.int32)
            bg_inds = hard_bg_inds[rand_num]
        elif hard_bg_inds.size == 0 and easy_bg_inds.size > 0:
            easy_bg_rois_num = bg_rois_per_this_image
            # sampling easy bg
            rand_num = np.floor(np.random.rand(easy_bg_rois_num) * easy_bg_inds.size).astype(np.int32)
            bg_inds = easy_bg_inds[rand_num]
        else:
            raise NotImplementedError

        return bg_inds

    def aug_roi_by_noise_batch(self, roi_boxes3d, gt_boxes3d, aug_times=10):
        """
        :param roi_boxes3d: (N, 7)
        :param gt_boxes3d: (N, 7)
        :return:
        """
        iou_of_rois = np.zeros(roi_boxes3d.shape[0], dtype=np.float32)
        for k in range(roi_boxes3d.__len__()):
            temp_iou = cnt = 0
            roi_box3d = roi_boxes3d[k]
            gt_box3d = gt_boxes3d[k]
            pos_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH)
            gt_corners = kitti_utils.boxes3d_to_corners3d(gt_box3d.reshape(1, 7), True)
            aug_box3d = roi_box3d
            while temp_iou < pos_thresh and cnt < aug_times:
                if np.random.rand() < 0.2:
                    aug_box3d = roi_box3d  # p=0.2 to keep the original roi box
                else:
                    aug_box3d = self.random_aug_box3d(roi_box3d)
                aug_corners = kitti_utils.boxes3d_to_corners3d(aug_box3d.reshape(1, 7), True)
                iou3d = kitti_utils.get_iou3d(aug_corners, gt_corners)
                temp_iou = iou3d[0][0]
                cnt += 1
            roi_boxes3d[k] = aug_box3d
            iou_of_rois[k] = temp_iou
        return roi_boxes3d, iou_of_rois

    @staticmethod
    def canonical_transform_batch(pts_input, roi_boxes3d, gt_boxes3d):
        """
        :param pts_input: (N, npoints, 3 + C)
        :param roi_boxes3d: (N, 7)
        :param gt_boxes3d: (N, 7)
        :return:
        """
        roi_ry = roi_boxes3d[:, 6] % (2 * np.pi)  # 0 ~ 2pi
        roi_center = roi_boxes3d[:, 0:3]
        # shift to center
        pts_input[:, :, [0, 1, 2]] = pts_input[:, :, [0, 1, 2]] - roi_center.reshape(-1, 1, 3)
        gt_boxes3d_ct = np.copy(gt_boxes3d)
        gt_boxes3d_ct[:, 0:3] = gt_boxes3d_ct[:, 0:3] - roi_center
        # rotate to the direction of head
        gt_boxes3d_ct = kitti_utils.rotate_pc_along_y_np(
            gt_boxes3d_ct.reshape(-1, 1, 7),
            roi_ry,
        )
        # TODO: check here
        gt_boxes3d_ct = gt_boxes3d_ct.reshape(-1,7)
        gt_boxes3d_ct[:, 6] = gt_boxes3d_ct[:, 6] - roi_ry
        pts_input = kitti_utils.rotate_pc_along_y_np(
            pts_input, 
            roi_ry
        )
        return pts_input, gt_boxes3d_ct

    def get_rcnn_training_sample_batch(self, index):
        sample_id = int(self.sample_id_list[index])
        rpn_xyz, rpn_features, rpn_intensity, seg_mask = \
            self.get_rpn_features(self.rcnn_training_feature_dir, sample_id)

        # load rois and gt_boxes3d for this sample
        roi_file = os.path.join(self.rcnn_training_roi_dir, '%06d.txt' % sample_id)
        roi_obj_list = kitti_utils.get_objects_from_label(roi_file)
        roi_boxes3d = kitti_utils.objs_to_boxes3d(roi_obj_list)
        # roi_scores = kitti_utils.objs_to_scores(roi_obj_list)

        gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
        gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list)

        # calculate original iou
        iou3d = kitti_utils.get_iou3d(kitti_utils.boxes3d_to_corners3d(roi_boxes3d, True),
                                      kitti_utils.boxes3d_to_corners3d(gt_boxes3d, True))
        max_overlaps, gt_assignment = iou3d.max(axis=1), iou3d.argmax(axis=1)
        max_iou_of_gt, roi_assignment = iou3d.max(axis=0), iou3d.argmax(axis=0)
        roi_assignment = roi_assignment[max_iou_of_gt > 0].reshape(-1)

        # sample fg, easy_bg, hard_bg
        fg_rois_per_image = int(np.round(cfg.RCNN.FG_RATIO * cfg.RCNN.ROI_PER_IMAGE))
        fg_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH)
        fg_inds = np.nonzero(max_overlaps >= fg_thresh)[0]
        fg_inds = np.concatenate((fg_inds, roi_assignment), axis=0)  # consider the roi which has max_overlaps with gt as fg

        easy_bg_inds = np.nonzero((max_overlaps < cfg.RCNN.CLS_BG_THRESH_LO))[0]
        hard_bg_inds = np.nonzero((max_overlaps < cfg.RCNN.CLS_BG_THRESH) &
                                  (max_overlaps >= cfg.RCNN.CLS_BG_THRESH_LO))[0]

        fg_num_rois = fg_inds.size
        bg_num_rois = hard_bg_inds.size + easy_bg_inds.size

        if fg_num_rois > 0 and bg_num_rois > 0:
            # sampling fg
            fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois)
            rand_num = np.random.permutation(fg_num_rois)
            fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]]

            # sampling bg
            bg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE  - fg_rois_per_this_image
            bg_inds = self.sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image)

        elif fg_num_rois > 0 and bg_num_rois == 0:
            # sampling fg
            rand_num = np.floor(np.random.rand(cfg.RCNN.ROI_PER_IMAGE ) * fg_num_rois)
            # rand_num = torch.from_numpy(rand_num).type_as(gt_boxes3d).long()
            fg_inds = fg_inds[rand_num]
            fg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE
            bg_rois_per_this_image = 0
        elif bg_num_rois > 0 and fg_num_rois == 0:
            # sampling bg
            bg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE
            bg_inds = self.sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image)
            fg_rois_per_this_image = 0
        else:
            import pdb
            pdb.set_trace()
            raise NotImplementedError

        # augment the rois by noise
        roi_list, roi_iou_list, roi_gt_list = [], [], []
        if fg_rois_per_this_image > 0:
            fg_rois_src = roi_boxes3d[fg_inds].copy()
            gt_of_fg_rois = gt_boxes3d[gt_assignment[fg_inds]]
            fg_rois, fg_iou3d = self.aug_roi_by_noise_batch(fg_rois_src, gt_of_fg_rois, aug_times=10)
            roi_list.append(fg_rois)
            roi_iou_list.append(fg_iou3d)
            roi_gt_list.append(gt_of_fg_rois)

        if bg_rois_per_this_image > 0:
            bg_rois_src = roi_boxes3d[bg_inds].copy()
            gt_of_bg_rois = gt_boxes3d[gt_assignment[bg_inds]]
            bg_rois, bg_iou3d = self.aug_roi_by_noise_batch(bg_rois_src, gt_of_bg_rois, aug_times=1)
            roi_list.append(bg_rois)
            roi_iou_list.append(bg_iou3d)
            roi_gt_list.append(gt_of_bg_rois)

        rois = np.concatenate(roi_list, axis=0)
        iou_of_rois = np.concatenate(roi_iou_list, axis=0)
        gt_of_rois = np.concatenate(roi_gt_list, axis=0)

        # collect extra features for point cloud pooling
        if cfg.RCNN.USE_INTENSITY:
            pts_extra_input_list = [rpn_intensity.reshape(-1, 1), seg_mask.reshape(-1, 1)]
        else:
            pts_extra_input_list = [seg_mask.reshape(-1, 1)]

        if cfg.RCNN.USE_DEPTH:
            pts_depth = (np.linalg.norm(rpn_xyz, ord=2, axis=1) / 70.0) - 0.5
            pts_extra_input_list.append(pts_depth.reshape(-1, 1))
        pts_extra_input = np.concatenate(pts_extra_input_list, axis=1)

        # pts, pts_feature, boxes3d, pool_extra_width, sampled_pt_num
        pts_input, pts_features, pts_empty_flag = roipool3d_utils.roipool3d_cpu(
            rpn_xyz, rpn_features, rois, pts_extra_input,
            cfg.RCNN.POOL_EXTRA_WIDTH,
            sampled_pt_num=cfg.RCNN.NUM_POINTS,
            #canonical_transform=False
        )

        # data augmentation
        if cfg.AUG_DATA and self.mode == 'TRAIN':
            for k in range(rois.__len__()):
                aug_pts = pts_input[k, :, 0:3].copy()
                aug_gt_box3d = gt_of_rois[k].copy()
                aug_roi_box3d = rois[k].copy()

                # calculate alpha by ry
                temp_boxes3d = np.concatenate([aug_roi_box3d.reshape(1, 7), aug_gt_box3d.reshape(1, 7)], axis=0)
                temp_x, temp_z, temp_ry = temp_boxes3d[:, 0], temp_boxes3d[:, 2], temp_boxes3d[:, 6]
                temp_beta = np.arctan2(temp_z, temp_x).astype(np.float64)
                temp_alpha = -np.sign(temp_beta) * np.pi / 2 + temp_beta + temp_ry

                # data augmentation
                aug_pts, aug_boxes3d, aug_method = self.data_augmentation(aug_pts, temp_boxes3d, temp_alpha,
                                                                          mustaug=True, stage=2)

                # assign to original data
                pts_input[k, :, 0:3] = aug_pts
                rois[k] = aug_boxes3d[0]
                gt_of_rois[k] = aug_boxes3d[1]

        valid_mask = (pts_empty_flag == 0).astype(np.int32)
        # regression valid mask
        reg_valid_mask = (iou_of_rois > cfg.RCNN.REG_FG_THRESH).astype(np.int32) & valid_mask

        # classification label
        cls_label = (iou_of_rois > cfg.RCNN.CLS_FG_THRESH).astype(np.int32)
        invalid_mask = (iou_of_rois > cfg.RCNN.CLS_BG_THRESH) & (iou_of_rois < cfg.RCNN.CLS_FG_THRESH)
        cls_label[invalid_mask] = -1
        cls_label[valid_mask == 0] = -1

        # canonical transform and sampling
        pts_input_ct, gt_boxes3d_ct = self.canonical_transform_batch(pts_input, rois, gt_of_rois)

        pts_input_ = np.concatenate((pts_input_ct, pts_features), axis=-1)
        sample_info = OrderedDict()

        sample_info['sample_id'] = sample_id
        sample_info['pts_input'] = pts_input_
        sample_info['pts_feature'] = pts_features
        sample_info['roi_boxes3d'] = rois
        sample_info['cls_label'] = cls_label
        sample_info['reg_valid_mask'] = reg_valid_mask
        sample_info['gt_boxes3d_ct'] = gt_boxes3d_ct
        sample_info['gt_of_rois'] = gt_of_rois
        return sample_info

    @staticmethod
    def random_aug_box3d(box3d):
        """
        :param box3d: (7) [x, y, z, h, w, l, ry]
        random shift, scale, orientation
        """
        if cfg.RCNN.REG_AUG_METHOD == 'single':
            pos_shift = (np.random.rand(3) - 0.5)  # [-0.5 ~ 0.5]
            hwl_scale = (np.random.rand(3) - 0.5) / (0.5 / 0.15) + 1.0  #
            angle_rot = (np.random.rand(1) - 0.5) / (0.5 / (np.pi / 12))  # [-pi/12 ~ pi/12]

            aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale,
                                        box3d[6:7] + angle_rot])
            return aug_box3d
        elif cfg.RCNN.REG_AUG_METHOD == 'multiple':
            # pos_range, hwl_range, angle_range, mean_iou
            range_config = [[0.2, 0.1, np.pi / 12, 0.7],
                            [0.3, 0.15, np.pi / 12, 0.6],
                            [0.5, 0.15, np.pi / 9, 0.5],
                            [0.8, 0.15, np.pi / 6, 0.3],
                            [1.0, 0.15, np.pi / 3, 0.2]]
            idx = np.random.randint(len(range_config))

            pos_shift = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][0]
            hwl_scale = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][1] + 1.0
            angle_rot = ((np.random.rand(1) - 0.5) / 0.5) * range_config[idx][2]

            aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot])
            return aug_box3d
        elif cfg.RCNN.REG_AUG_METHOD == 'normal':
            x_shift = np.random.normal(loc=0, scale=0.3)
            y_shift = np.random.normal(loc=0, scale=0.2)
            z_shift = np.random.normal(loc=0, scale=0.3)
            h_shift = np.random.normal(loc=0, scale=0.25)
            w_shift = np.random.normal(loc=0, scale=0.15)
            l_shift = np.random.normal(loc=0, scale=0.5)
            ry_shift = ((np.random.rand() - 0.5) / 0.5) * np.pi / 12

            aug_box3d = np.array([box3d[0] + x_shift, box3d[1] + y_shift, box3d[2] + z_shift, box3d[3] + h_shift,
                                  box3d[4] + w_shift, box3d[5] + l_shift, box3d[6] + ry_shift])
            return aug_box3d
        else:
            raise NotImplementedError

    def get_proposal_from_file(self, index):
        sample_id = int(self.image_idx_list[index])
        proposal_file = os.path.join(self.rcnn_eval_roi_dir, '%06d.txt' % sample_id)
        roi_obj_list = kitti_utils.get_objects_from_label(proposal_file)

        rpn_xyz, rpn_features, rpn_intensity, seg_mask = self.get_rpn_features(self.rcnn_eval_feature_dir, sample_id)
        pts_rect, pts_rpn_features, pts_intensity = rpn_xyz, rpn_features, rpn_intensity

        roi_box3d_list, roi_scores = [], []
        for obj in roi_obj_list:
            box3d = np.array([obj.pos[0], obj.pos[1], obj.pos[2], obj.h, obj.w, obj.l, obj.ry], dtype=np.float32)
            roi_box3d_list.append(box3d.reshape(1, 7))
            roi_scores.append(obj.score)

        roi_boxes3d = np.concatenate(roi_box3d_list, axis=0)  # (N, 7)
        roi_scores = np.array(roi_scores, dtype=np.float32)  # (N)

        if cfg.RCNN.ROI_SAMPLE_JIT:
            sample_dict = {'sample_id': sample_id,
                           'rpn_xyz': rpn_xyz,
                           'rpn_features': rpn_features,
                           'seg_mask': seg_mask,
                           'roi_boxes3d': roi_boxes3d,
                           'roi_scores': roi_scores,
                           'pts_depth': np.linalg.norm(rpn_xyz, ord=2, axis=1)}

            if self.mode != 'TEST':
                gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
                gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list)

                roi_corners = kitti_utils.boxes3d_to_corners3d(roi_boxes3d,True)
                gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d,True)
                iou3d = kitti_utils.get_iou3d(roi_corners, gt_corners)
                if gt_boxes3d.shape[0] > 0:
                    gt_iou = iou3d.max(axis=1)
                else:
                    gt_iou = np.zeros(roi_boxes3d.shape[0]).astype(np.float32)

                sample_dict['gt_boxes3d'] = gt_boxes3d
                sample_dict['gt_iou'] = gt_iou
            return sample_dict

        if cfg.RCNN.USE_INTENSITY:
            pts_extra_input_list = [pts_intensity.reshape(-1, 1), seg_mask.reshape(-1, 1)]
        else:
            pts_extra_input_list = [seg_mask.reshape(-1, 1)]

        if cfg.RCNN.USE_DEPTH:
            cur_depth = np.linalg.norm(pts_rect, axis=1, ord=2)
            cur_depth_norm = (cur_depth / 70.0) - 0.5
            pts_extra_input_list.append(cur_depth_norm.reshape(-1, 1))

        pts_extra_input = np.concatenate(pts_extra_input_list, axis=1)
        pts_input, pts_features, _ = roipool3d_utils.roipool3d_cpu(
            pts_rect, pts_rpn_features, roi_boxes3d, pts_extra_input, 
            cfg.RCNN.POOL_EXTRA_WIDTH, sampled_pt_num=cfg.RCNN.NUM_POINTS,
            canonical_transform=True
        )
        pts_input = np.concatenate((pts_input, pts_features), axis=-1)
        
        sample_dict = OrderedDict()
        sample_dict['sample_id'] = sample_id 
        sample_dict['pts_input'] = pts_input 
        sample_dict['pts_feature'] = pts_features 
        sample_dict['roi_boxes3d'] = roi_boxes3d 
        sample_dict['roi_scores'] = roi_scores 
        #sample_dict['roi_size'] = roi_boxes3d[:, 3:6]

        if self.mode == 'TEST':
            return sample_dict

        gt_obj_list = self.filtrate_objects(self.get_label(sample_id))
        gt_boxes3d = np.zeros((gt_obj_list.__len__(), 7), dtype=np.float32)

        for k, obj in enumerate(gt_obj_list):
            gt_boxes3d[k, 0:3], gt_boxes3d[k, 3], gt_boxes3d[k, 4], gt_boxes3d[k, 5], gt_boxes3d[k, 6] \
                = obj.pos, obj.h, obj.w, obj.l, obj.ry

        if gt_boxes3d.__len__() == 0:
            gt_iou = np.zeros((roi_boxes3d.shape[0]), dtype=np.float32)
        else:
            roi_corners = kitti_utils.boxes3d_to_corners3d(roi_boxes3d,True)
            gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d,True)
            iou3d = kitti_utils.get_iou3d(roi_corners, gt_corners)
            gt_iou = iou3d.max(axis=1)

        sample_dict['gt_iou'] = gt_iou
        sample_dict['gt_boxes3d'] = gt_boxes3d
        
        return sample_dict

    def __len__(self):
        if cfg.RPN.ENABLED:
            return len(self.sample_id_list)
        elif cfg.RCNN.ENABLED:
            if self.mode == 'TRAIN':
                return len(self.sample_id_list)
            else:
                return len(self.image_idx_list)
        else:
            raise NotImplementedError

    def __getitem__(self, index):
        if cfg.RPN.ENABLED:
            return self.get_rpn_sample(index)
        elif cfg.RCNN.ENABLED:
            if self.mode == 'TRAIN':
                if cfg.RCNN.ROI_SAMPLE_JIT:
                    return self.get_rcnn_sample_jit(index)
                else:
                    return self.get_rcnn_training_sample_batch(index)
            else:
                return self.get_proposal_from_file(index)
        else:
            raise NotImplementedError

    def padding_batch(self, batch_data, batch_size):
        max_roi = 0
        max_gt = 0 
        
        for k in range(batch_size):
            # roi_boxes3d
            max_roi = max(max_roi, batch_data[k][3].shape[0])
            # gt_boxes3d
            max_gt = max(max_gt, batch_data[k][-1].shape[0])
        batch_roi_boxes3d = np.zeros((batch_size, max_roi, 7))
        batch_gt_boxes3d = np.zeros((batch_size, max_gt, 7), dtype=np.float32)
        
        for i, data in enumerate(batch_data):
            roi_num = data[3].shape[0]
            gt_num = data[-1].shape[0]
            batch_roi_boxes3d[i,:roi_num,:] = data[3]
            batch_gt_boxes3d[i,:gt_num,:] = data[-1]

        new_batch = []
        for i, data in enumerate(batch_data):
            new_batch.append(data[:3])
            # roi_boxes3d
            new_batch[i].append(batch_roi_boxes3d[i])
            # ... 
            new_batch[i].extend(data[4:7])
            # gt_boxes3d
            new_batch[i].append(batch_gt_boxes3d[i])
        return new_batch

    def padding_batch_eval(self, batch_data, batch_size):
        max_pts = 0 
        max_feats = 0
        max_roi = 0
        max_score = 0
        max_iou = 0
        max_gt = 0
        
        for k in range(batch_size):
            # pts_input
            max_pts = max(max_pts, batch_data[k][1].shape[0])
            # pts_feature
            max_feats = max(max_feats, batch_data[k][2].shape[0])
            # roi_boxes3d
            max_roi = max(max_roi, batch_data[k][3].shape[0])
            # gt_iou 
            max_iou = max(max_iou, batch_data[k][-2].shape[0])
            # gt_boxes3d
            max_gt = max(max_gt, batch_data[k][-1].shape[0])
        batch_pts_input = np.zeros((batch_size, max_pts, 512, 133), dtype=np.float32)
        batch_pts_feat = np.zeros((batch_size, max_feats, 512, 128), dtype=np.float32)
        batch_roi_boxes3d = np.zeros((batch_size, max_roi, 7), dtype=np.float32)
        batch_gt_iou = np.zeros((batch_size, max_iou), dtype=np.float32)
        batch_gt_boxes3d = np.zeros((batch_size, max_gt, 7), dtype=np.float32)
        
        for i, data in enumerate(batch_data):
            # num
            pts_num = data[1].shape[0]
            pts_feat_num = data[2].shape[0]
            roi_num = data[3].shape[0]
            iou_num = data[-2].shape[0]
            gt_num = data[-1].shape[0]
            # data
            batch_pts_input[i, :pts_num, :, :] = data[1]
            batch_pts_feat[i, :pts_feat_num, :, :] = data[2]
            batch_roi_boxes3d[i,:roi_num,:] = data[3]
            batch_gt_iou[i,:iou_num] = data[-2] 
            batch_gt_boxes3d[i,:gt_num,:] = data[-1]
            
        new_batch = []
        for i, data in enumerate(batch_data):
            new_batch.append(data[:1])
            new_batch[i].append(batch_pts_input[i])
            new_batch[i].append(batch_pts_feat[i])
            new_batch[i].append(batch_roi_boxes3d[i])
            new_batch[i].append(data[4])
            new_batch[i].append(batch_gt_iou[i])
            new_batch[i].append(batch_gt_boxes3d[i])
        return new_batch

    def get_reader(self, batch_size, fields, drop_last=False):
        def reader():
            batch_out = []
            idxs = np.arange(self.__len__())
            if self.mode == 'TRAIN':
                np.random.shuffle(idxs)
            for idx in idxs:
                sample_all = self.__getitem__(idx)
                sample = [sample_all[f] for f in fields]
                if has_empty(sample):
                    logger.info("sample field: %d has empty field"%len(sample))
                    continue
                batch_out.append(sample)
                if len(batch_out) >= batch_size:
                    if cfg.RPN.ENABLED:
                        yield batch_out
                    else:
                        if self.mode == 'TRAIN':
                            yield self.padding_batch(batch_out, batch_size)
                        elif self.mode == 'EVAL':
                            # batch_size can should be 1 in rcnn_offline eval currently
                            # if batch_size > 1, batch should be padded as follow
                            # yield self.padding_batch_eval(batch_out, batch_size)
                            yield batch_out
                        else:
                            logger.error("not only support train/eval padding")
                    batch_out = []
            if not drop_last:
                if len(batch_out) > 0:
                    yield batch_out
        return reader

    def get_multiprocess_reader(self, batch_size, fields, proc_num=8, max_queue_len=128, drop_last=False):
        def read_to_queue(idxs, queue):
            for idx in idxs:
                sample_all = self.__getitem__(idx)
                sample = [sample_all[f] for f in fields]
                queue.put(sample)
            queue.put(None)

        def reader():
            sample_num = self.__len__()
            idxs = np.arange(self.__len__())
            if self.mode == 'TRAIN':
                np.random.shuffle(idxs)

            proc_idxs = []
            proc_sample_num = int(sample_num / proc_num)
            start_idx = 0
            for i in range(proc_num - 1):
                proc_idxs.append(idxs[start_idx:start_idx + proc_sample_num])
                start_idx += proc_sample_num
            proc_idxs.append(idxs[start_idx:])

            queue = multiprocessing.Queue(max_queue_len)
            p_list = []
            for i in range(proc_num):
                p_list.append(multiprocessing.Process(
                    target=read_to_queue, args=(proc_idxs[i], queue,)))
                p_list[-1].start()

            finish_num = 0
            batch_out = []
            while finish_num < len(p_list):
                sample = queue.get()
                if sample is None:
                    finish_num += 1
                else:
                    batch_out.append(sample)
                    if len(batch_out) == batch_size:
                        yield batch_out
                        batch_out = []

            # join process
            for p in p_list:
                if p.is_alive():
                    p.join()

        return reader