# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. """ This code is based on https://github.com/sshaoshuai/PointRCNN/blob/master/lib/datasets/kitti_rcnn_dataset.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import multiprocessing import numpy as np import scipy from scipy.spatial import Delaunay try: import cPickle as pickle except: import pickle import pts_utils import utils.cyops.kitti_utils as kitti_utils import utils.cyops.roipool3d_utils as roipool3d_utils from data.kitti_dataset import KittiDataset from utils.config import cfg from collections import OrderedDict __all__ = ["KittiRCNNReader"] logger = logging.getLogger(__name__) def has_empty(data): for d in data: if isinstance(d, np.ndarray) and len(d) == 0: return True return False def in_hull(p, hull): """ :param p: (N, K) test points :param hull: (M, K) M corners of a box :return (N) bool """ try: if not isinstance(hull, Delaunay): hull = Delaunay(hull) flag = hull.find_simplex(p) >= 0 except scipy.spatial.qhull.QhullError: logger.debug('Warning: not a hull.') flag = np.zeros(p.shape[0], dtype=np.bool) return flag class KittiRCNNReader(KittiDataset): def __init__(self, data_dir, npoints=16384, split='train', classes='Car', mode='TRAIN', random_select=True, rcnn_training_roi_dir=None, rcnn_training_feature_dir=None, rcnn_eval_roi_dir=None, rcnn_eval_feature_dir=None, gt_database_dir=None): super(KittiRCNNReader, self).__init__(data_dir=data_dir, split=split) if classes == 'Car': self.classes = ('Background', 'Car') aug_scene_data_dir = os.path.join(data_dir, 'KITTI', 'aug_scene') elif classes == 'People': self.classes = ('Background', 'Pedestrian', 'Cyclist') elif classes == 'Pedestrian': self.classes = ('Background', 'Pedestrian') aug_scene_data_dir = os.path.join(data_dir, 'KITTI', 'aug_scene_ped') elif classes == 'Cyclist': self.classes = ('Background', 'Cyclist') aug_scene_data_dir = os.path.join(data_dir, 'KITTI', 'aug_scene_cyclist') else: assert False, "Invalid classes: %s" % classes self.num_classes = len(self.classes) self.npoints = npoints self.sample_id_list = [] self.random_select = random_select if split == 'train_aug': self.aug_label_dir = os.path.join(aug_scene_data_dir, 'training', 'aug_label') self.aug_pts_dir = os.path.join(aug_scene_data_dir, 'training', 'rectified_data') else: self.aug_label_dir = os.path.join(aug_scene_data_dir, 'training', 'aug_label') self.aug_pts_dir = os.path.join(aug_scene_data_dir, 'training', 'rectified_data') # for rcnn training self.rcnn_training_bbox_list = [] self.rpn_feature_list = {} self.pos_bbox_list = [] self.neg_bbox_list = [] self.far_neg_bbox_list = [] self.rcnn_eval_roi_dir = rcnn_eval_roi_dir self.rcnn_eval_feature_dir = rcnn_eval_feature_dir self.rcnn_training_roi_dir = rcnn_training_roi_dir self.rcnn_training_feature_dir = rcnn_training_feature_dir self.gt_database = None if not self.random_select: logger.warning('random select is False') assert mode in ['TRAIN', 'EVAL', 'TEST'], 'Invalid mode: %s' % mode self.mode = mode if cfg.RPN.ENABLED: if gt_database_dir is not None: self.gt_database = pickle.load(open(gt_database_dir, 'rb')) if cfg.GT_AUG_HARD_RATIO > 0: easy_list, hard_list = [], [] for k in range(self.gt_database.__len__()): obj = self.gt_database[k] if obj['points'].shape[0] > 100: easy_list.append(obj) else: hard_list.append(obj) self.gt_database = [easy_list, hard_list] logger.info('Loading gt_database(easy(pt_num>100): %d, hard(pt_num<=100): %d) from %s' % (len(easy_list), len(hard_list), gt_database_dir)) else: logger.info('Loading gt_database(%d) from %s' % (len(self.gt_database), gt_database_dir)) if mode == 'TRAIN': self.preprocess_rpn_training_data() else: self.sample_id_list = [int(sample_id) for sample_id in self.image_idx_list] logger.info('Load testing samples from %s' % self.imageset_dir) logger.info('Done: total test samples %d' % len(self.sample_id_list)) elif cfg.RCNN.ENABLED: for idx in range(0, self.num_sample): sample_id = int(self.image_idx_list[idx]) obj_list = self.filtrate_objects(self.get_label(sample_id)) if len(obj_list) == 0: # logger.info('No gt classes: %06d' % sample_id) continue self.sample_id_list.append(sample_id) logger.info('Done: filter %s results for rcnn training: %d / %d\n' % (self.mode, len(self.sample_id_list), len(self.image_idx_list))) def preprocess_rpn_training_data(self): """ Discard samples which don't have current classes, which will not be used for training. Valid sample_id is stored in self.sample_id_list """ logger.info('Loading %s samples from %s ...' % (self.mode, self.label_dir)) for idx in range(0, self.num_sample): sample_id = int(self.image_idx_list[idx]) obj_list = self.filtrate_objects(self.get_label(sample_id)) if len(obj_list) == 0: logger.debug('No gt classes: %06d' % sample_id) continue self.sample_id_list.append(sample_id) logger.info('Done: filter %s results: %d / %d\n' % (self.mode, len(self.sample_id_list), len(self.image_idx_list))) def get_label(self, idx): if idx < 10000: label_file = os.path.join(self.label_dir, '%06d.txt' % idx) else: label_file = os.path.join(self.aug_label_dir, '%06d.txt' % idx) assert os.path.exists(label_file) return kitti_utils.get_objects_from_label(label_file) def get_image(self, idx): return super(KittiRCNNReader, self).get_image(idx % 10000) def get_image_shape(self, idx): return super(KittiRCNNReader, self).get_image_shape(idx % 10000) def get_calib(self, idx): return super(KittiRCNNReader, self).get_calib(idx % 10000) def get_road_plane(self, idx): return super(KittiRCNNReader, self).get_road_plane(idx % 10000) @staticmethod def get_rpn_features(rpn_feature_dir, idx): rpn_feature_file = os.path.join(rpn_feature_dir, '%06d.npy' % idx) rpn_xyz_file = os.path.join(rpn_feature_dir, '%06d_xyz.npy' % idx) rpn_intensity_file = os.path.join(rpn_feature_dir, '%06d_intensity.npy' % idx) if cfg.RCNN.USE_SEG_SCORE: rpn_seg_file = os.path.join(rpn_feature_dir, '%06d_rawscore.npy' % idx) rpn_seg_score = np.load(rpn_seg_file).reshape(-1) rpn_seg_score = torch.sigmoid(torch.from_numpy(rpn_seg_score)).numpy() else: rpn_seg_file = os.path.join(rpn_feature_dir, '%06d_seg.npy' % idx) rpn_seg_score = np.load(rpn_seg_file).reshape(-1) return np.load(rpn_xyz_file), np.load(rpn_feature_file), np.load(rpn_intensity_file).reshape(-1), rpn_seg_score def filtrate_objects(self, obj_list): """ Discard objects which are not in self.classes (or its similar classes) :param obj_list: list :return: list """ type_whitelist = self.classes if self.mode == 'TRAIN' and cfg.INCLUDE_SIMILAR_TYPE: type_whitelist = list(self.classes) if 'Car' in self.classes: type_whitelist.append('Van') if 'Pedestrian' in self.classes: # or 'Cyclist' in self.classes: type_whitelist.append('Person_sitting') valid_obj_list = [] for obj in obj_list: if obj.cls_type not in type_whitelist: # rm Van, 20180928 continue if self.mode == 'TRAIN' and cfg.PC_REDUCE_BY_RANGE and (self.check_pc_range(obj.pos) is False): continue valid_obj_list.append(obj) return valid_obj_list @staticmethod def filtrate_dc_objects(obj_list): valid_obj_list = [] for obj in obj_list: if obj.cls_type in ['DontCare']: continue valid_obj_list.append(obj) return valid_obj_list @staticmethod def check_pc_range(xyz): """ :param xyz: [x, y, z] :return: """ x_range, y_range, z_range = cfg.PC_AREA_SCOPE if (x_range[0] <= xyz[0] <= x_range[1]) and (y_range[0] <= xyz[1] <= y_range[1]) and \ (z_range[0] <= xyz[2] <= z_range[1]): return True return False @staticmethod def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape): """ Valid point should be in the image (and in the PC_AREA_SCOPE) :param pts_rect: :param pts_img: :param pts_rect_depth: :param img_shape: :return: """ val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1]) val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0]) val_flag_merge = np.logical_and(val_flag_1, val_flag_2) pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0) if cfg.PC_REDUCE_BY_RANGE: x_range, y_range, z_range = cfg.PC_AREA_SCOPE pts_x, pts_y, pts_z = pts_rect[:, 0], pts_rect[:, 1], pts_rect[:, 2] range_flag = (pts_x >= x_range[0]) & (pts_x <= x_range[1]) \ & (pts_y >= y_range[0]) & (pts_y <= y_range[1]) \ & (pts_z >= z_range[0]) & (pts_z <= z_range[1]) pts_valid_flag = pts_valid_flag & range_flag return pts_valid_flag def get_rpn_sample(self, index): sample_id = int(self.sample_id_list[index]) if sample_id < 10000: calib = self.get_calib(sample_id) # img = self.get_image(sample_id) img_shape = self.get_image_shape(sample_id) pts_lidar = self.get_lidar(sample_id) # get valid point (projected points should be in image) pts_rect = calib.lidar_to_rect(pts_lidar[:, 0:3]) pts_intensity = pts_lidar[:, 3] else: calib = self.get_calib(sample_id % 10000) # img = self.get_image(sample_id % 10000) img_shape = self.get_image_shape(sample_id % 10000) pts_file = os.path.join(self.aug_pts_dir, '%06d.bin' % sample_id) assert os.path.exists(pts_file), '%s' % pts_file aug_pts = np.fromfile(pts_file, dtype=np.float32).reshape(-1, 4) pts_rect, pts_intensity = aug_pts[:, 0:3], aug_pts[:, 3] pts_img, pts_rect_depth = calib.rect_to_img(pts_rect) pts_valid_flag = self.get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape) pts_rect = pts_rect[pts_valid_flag][:, 0:3] pts_intensity = pts_intensity[pts_valid_flag] if cfg.GT_AUG_ENABLED and self.mode == 'TRAIN': # all labels for checking overlapping all_gt_obj_list = self.filtrate_dc_objects(self.get_label(sample_id)) all_gt_boxes3d = kitti_utils.objs_to_boxes3d(all_gt_obj_list) gt_aug_flag = False if np.random.rand() < cfg.GT_AUG_APPLY_PROB: # augment one scene gt_aug_flag, pts_rect, pts_intensity, extra_gt_boxes3d, extra_gt_obj_list = \ self.apply_gt_aug_to_one_scene(sample_id, pts_rect, pts_intensity, all_gt_boxes3d) # generate inputs if self.mode == 'TRAIN' or self.random_select: if self.npoints < len(pts_rect): pts_depth = pts_rect[:, 2] pts_near_flag = pts_depth < 40.0 far_idxs_choice = np.where(pts_near_flag == 0)[0] near_idxs = np.where(pts_near_flag == 1)[0] near_idxs_choice = np.random.choice(near_idxs, self.npoints - len(far_idxs_choice), replace=False) choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \ if len(far_idxs_choice) > 0 else near_idxs_choice np.random.shuffle(choice) else: choice = np.arange(0, len(pts_rect), dtype=np.int32) if self.npoints > len(pts_rect): extra_choice = np.random.choice(choice, self.npoints - len(pts_rect), replace=False) choice = np.concatenate((choice, extra_choice), axis=0) np.random.shuffle(choice) ret_pts_rect = pts_rect[choice, :] ret_pts_intensity = pts_intensity[choice] - 0.5 # translate intensity to [-0.5, 0.5] else: ret_pts_rect = np.zeros((self.npoints, pts_rect.shape[1])).astype(pts_rect.dtype) num_ = min(self.npoints, pts_rect.shape[0]) ret_pts_rect[:num_] = pts_rect[:num_] ret_pts_intensity = pts_intensity - 0.5 pts_features = [ret_pts_intensity.reshape(-1, 1)] ret_pts_features = np.concatenate(pts_features, axis=1) if pts_features.__len__() > 1 else pts_features[0] sample_info = {'sample_id': sample_id, 'random_select': self.random_select} if self.mode == 'TEST': if cfg.RPN.USE_INTENSITY: pts_input = np.concatenate((ret_pts_rect, ret_pts_features), axis=1) # (N, C) else: pts_input = ret_pts_rect sample_info['pts_input'] = pts_input sample_info['pts_rect'] = ret_pts_rect sample_info['pts_features'] = ret_pts_features return sample_info gt_obj_list = self.filtrate_objects(self.get_label(sample_id)) if cfg.GT_AUG_ENABLED and self.mode == 'TRAIN' and gt_aug_flag: gt_obj_list.extend(extra_gt_obj_list) gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list) gt_alpha = np.zeros((gt_obj_list.__len__()), dtype=np.float32) for k, obj in enumerate(gt_obj_list): gt_alpha[k] = obj.alpha # data augmentation aug_pts_rect = ret_pts_rect.copy() aug_gt_boxes3d = gt_boxes3d.copy() if cfg.AUG_DATA and self.mode == 'TRAIN': aug_pts_rect, aug_gt_boxes3d, aug_method = self.data_augmentation(aug_pts_rect, aug_gt_boxes3d, gt_alpha, sample_id) sample_info['aug_method'] = aug_method # prepare input if cfg.RPN.USE_INTENSITY: pts_input = np.concatenate((aug_pts_rect, ret_pts_features), axis=1) # (N, C) else: pts_input = aug_pts_rect if cfg.RPN.FIXED: sample_info['pts_input'] = pts_input sample_info['pts_rect'] = aug_pts_rect sample_info['pts_features'] = ret_pts_features sample_info['gt_boxes3d'] = aug_gt_boxes3d return sample_info if self.mode == 'EVAL' and aug_gt_boxes3d.shape[0] == 0: aug_gt_boxes3d = np.zeros((1, aug_gt_boxes3d.shape[1])) # generate training labels rpn_cls_label, rpn_reg_label = self.generate_rpn_training_labels(aug_pts_rect, aug_gt_boxes3d) sample_info['pts_input'] = pts_input sample_info['pts_rect'] = aug_pts_rect sample_info['pts_features'] = ret_pts_features sample_info['rpn_cls_label'] = rpn_cls_label sample_info['rpn_reg_label'] = rpn_reg_label sample_info['gt_boxes3d'] = aug_gt_boxes3d return sample_info def apply_gt_aug_to_one_scene(self, sample_id, pts_rect, pts_intensity, all_gt_boxes3d): """ :param pts_rect: (N, 3) :param all_gt_boxex3d: (M2, 7) :return: """ assert self.gt_database is not None # extra_gt_num = np.random.randint(10, 15) # try_times = 50 if cfg.GT_AUG_RAND_NUM: extra_gt_num = np.random.randint(10, cfg.GT_EXTRA_NUM) else: extra_gt_num = cfg.GT_EXTRA_NUM try_times = 100 cnt = 0 cur_gt_boxes3d = all_gt_boxes3d.copy() cur_gt_boxes3d[:, 4] += 0.5 # TODO: consider different objects cur_gt_boxes3d[:, 5] += 0.5 # enlarge new added box to avoid too nearby boxes cur_gt_corners = kitti_utils.boxes3d_to_corners3d(cur_gt_boxes3d) extra_gt_obj_list = [] extra_gt_boxes3d_list = [] new_pts_list, new_pts_intensity_list = [], [] src_pts_flag = np.ones(pts_rect.shape[0], dtype=np.int32) road_plane = self.get_road_plane(sample_id) a, b, c, d = road_plane while try_times > 0: if cnt > extra_gt_num: break try_times -= 1 if cfg.GT_AUG_HARD_RATIO > 0: p = np.random.rand() if p > cfg.GT_AUG_HARD_RATIO: # use easy sample rand_idx = np.random.randint(0, len(self.gt_database[0])) new_gt_dict = self.gt_database[0][rand_idx] else: # use hard sample rand_idx = np.random.randint(0, len(self.gt_database[1])) new_gt_dict = self.gt_database[1][rand_idx] else: rand_idx = np.random.randint(0, self.gt_database.__len__()) new_gt_dict = self.gt_database[rand_idx] new_gt_box3d = new_gt_dict['gt_box3d'].copy() new_gt_points = new_gt_dict['points'].copy() new_gt_intensity = new_gt_dict['intensity'].copy() new_gt_obj = new_gt_dict['obj'] center = new_gt_box3d[0:3] if cfg.PC_REDUCE_BY_RANGE and (self.check_pc_range(center) is False): continue if new_gt_points.__len__() < 5: # too few points continue # put it on the road plane cur_height = (-d - a * center[0] - c * center[2]) / b move_height = new_gt_box3d[1] - cur_height new_gt_box3d[1] -= move_height new_gt_points[:, 1] -= move_height new_gt_obj.pos[1] -= move_height new_enlarged_box3d = new_gt_box3d.copy() new_enlarged_box3d[4] += 0.5 new_enlarged_box3d[5] += 0.5 # enlarge new added box to avoid too nearby boxes cnt += 1 new_corners = kitti_utils.boxes3d_to_corners3d(new_enlarged_box3d.reshape(1, 7)) iou3d = kitti_utils.get_iou3d(new_corners, cur_gt_corners) valid_flag = iou3d.max() < 1e-8 if not valid_flag: continue enlarged_box3d = new_gt_box3d.copy() enlarged_box3d[3] += 2 # remove the points above and below the object boxes_pts_mask_list = pts_utils.pts_in_boxes3d(pts_rect, enlarged_box3d.reshape(1, 7)) pt_mask_flag = (boxes_pts_mask_list[0] == 1) src_pts_flag[pt_mask_flag] = 0 # remove the original points which are inside the new box new_pts_list.append(new_gt_points) new_pts_intensity_list.append(new_gt_intensity) cur_gt_boxes3d = np.concatenate((cur_gt_boxes3d, new_enlarged_box3d.reshape(1, 7)), axis=0) cur_gt_corners = np.concatenate((cur_gt_corners, new_corners), axis=0) extra_gt_boxes3d_list.append(new_gt_box3d.reshape(1, 7)) extra_gt_obj_list.append(new_gt_obj) if new_pts_list.__len__() == 0: return False, pts_rect, pts_intensity, None, None extra_gt_boxes3d = np.concatenate(extra_gt_boxes3d_list, axis=0) # remove original points and add new points pts_rect = pts_rect[src_pts_flag == 1] pts_intensity = pts_intensity[src_pts_flag == 1] new_pts_rect = np.concatenate(new_pts_list, axis=0) new_pts_intensity = np.concatenate(new_pts_intensity_list, axis=0) pts_rect = np.concatenate((pts_rect, new_pts_rect), axis=0) pts_intensity = np.concatenate((pts_intensity, new_pts_intensity), axis=0) return True, pts_rect, pts_intensity, extra_gt_boxes3d, extra_gt_obj_list def rotate_box3d_along_y(self, box3d, rot_angle): old_x, old_z, ry = box3d[0], box3d[2], box3d[6] old_beta = np.arctan2(old_z, old_x) alpha = -np.sign(old_beta) * np.pi / 2 + old_beta + ry box3d = kitti_utils.rotate_pc_along_y(box3d.reshape(1, 7), rot_angle=rot_angle)[0] new_x, new_z = box3d[0], box3d[2] new_beta = np.arctan2(new_z, new_x) box3d[6] = np.sign(new_beta) * np.pi / 2 + alpha - new_beta return box3d def data_augmentation(self, aug_pts_rect, aug_gt_boxes3d, gt_alpha, sample_id=None, mustaug=False, stage=1): """ :param aug_pts_rect: (N, 3) :param aug_gt_boxes3d: (N, 7) :param gt_alpha: (N) :return: """ aug_list = cfg.AUG_METHOD_LIST aug_enable = 1 - np.random.rand(3) if mustaug is True: aug_enable[0] = -1 aug_enable[1] = -1 aug_method = [] if 'rotation' in aug_list and aug_enable[0] < cfg.AUG_METHOD_PROB[0]: angle = np.random.uniform(-np.pi / cfg.AUG_ROT_RANGE, np.pi / cfg.AUG_ROT_RANGE) aug_pts_rect = kitti_utils.rotate_pc_along_y(aug_pts_rect, rot_angle=angle) if stage == 1: # xyz change, hwl unchange aug_gt_boxes3d = kitti_utils.rotate_pc_along_y(aug_gt_boxes3d, rot_angle=angle) # calculate the ry after rotation x, z = aug_gt_boxes3d[:, 0], aug_gt_boxes3d[:, 2] beta = np.arctan2(z, x) new_ry = np.sign(beta) * np.pi / 2 + gt_alpha - beta aug_gt_boxes3d[:, 6] = new_ry # TODO: not in [-np.pi / 2, np.pi / 2] elif stage == 2: # for debug stage-2, this implementation has little float precision difference with the above one assert aug_gt_boxes3d.shape[0] == 2 aug_gt_boxes3d[0] = self.rotate_box3d_along_y(aug_gt_boxes3d[0], angle) aug_gt_boxes3d[1] = self.rotate_box3d_along_y(aug_gt_boxes3d[1], angle) else: raise NotImplementedError aug_method.append(['rotation', angle]) if 'scaling' in aug_list and aug_enable[1] < cfg.AUG_METHOD_PROB[1]: scale = np.random.uniform(0.95, 1.05) aug_pts_rect = aug_pts_rect * scale aug_gt_boxes3d[:, 0:6] = aug_gt_boxes3d[:, 0:6] * scale aug_method.append(['scaling', scale]) if 'flip' in aug_list and aug_enable[2] < cfg.AUG_METHOD_PROB[2]: # flip horizontal aug_pts_rect[:, 0] = -aug_pts_rect[:, 0] aug_gt_boxes3d[:, 0] = -aug_gt_boxes3d[:, 0] # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry if stage == 1: aug_gt_boxes3d[:, 6] = np.sign(aug_gt_boxes3d[:, 6]) * np.pi - aug_gt_boxes3d[:, 6] elif stage == 2: assert aug_gt_boxes3d.shape[0] == 2 aug_gt_boxes3d[0, 6] = np.sign(aug_gt_boxes3d[0, 6]) * np.pi - aug_gt_boxes3d[0, 6] aug_gt_boxes3d[1, 6] = np.sign(aug_gt_boxes3d[1, 6]) * np.pi - aug_gt_boxes3d[1, 6] else: raise NotImplementedError aug_method.append('flip') return aug_pts_rect, aug_gt_boxes3d, aug_method @staticmethod def generate_rpn_training_labels(pts_rect, gt_boxes3d): cls_label = np.zeros((pts_rect.shape[0]), dtype=np.int32) reg_label = np.zeros((pts_rect.shape[0], 7), dtype=np.float32) # dx, dy, dz, ry, h, w, l gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d, rotate=True) extend_gt_boxes3d = kitti_utils.enlarge_box3d(gt_boxes3d, extra_width=0.2) extend_gt_corners = kitti_utils.boxes3d_to_corners3d(extend_gt_boxes3d, rotate=True) for k in range(gt_boxes3d.shape[0]): box_corners = gt_corners[k] fg_pt_flag = in_hull(pts_rect, box_corners) fg_pts_rect = pts_rect[fg_pt_flag] cls_label[fg_pt_flag] = 1 # enlarge the bbox3d, ignore nearby points extend_box_corners = extend_gt_corners[k] fg_enlarge_flag = in_hull(pts_rect, extend_box_corners) ignore_flag = np.logical_xor(fg_pt_flag, fg_enlarge_flag) cls_label[ignore_flag] = -1 # pixel offset of object center center3d = gt_boxes3d[k][0:3].copy() # (x, y, z) center3d[1] -= gt_boxes3d[k][3] / 2 reg_label[fg_pt_flag, 0:3] = center3d - fg_pts_rect # Now y is the true center of 3d box 20180928 # size and angle encoding reg_label[fg_pt_flag, 3] = gt_boxes3d[k][3] # h reg_label[fg_pt_flag, 4] = gt_boxes3d[k][4] # w reg_label[fg_pt_flag, 5] = gt_boxes3d[k][5] # l reg_label[fg_pt_flag, 6] = gt_boxes3d[k][6] # ry return cls_label, reg_label def get_rcnn_sample_jit(self, index): sample_id = int(self.sample_id_list[index]) rpn_xyz, rpn_features, rpn_intensity, seg_mask = \ self.get_rpn_features(self.rcnn_training_feature_dir, sample_id) # load rois and gt_boxes3d for this sample roi_file = os.path.join(self.rcnn_training_roi_dir, '%06d.txt' % sample_id) roi_obj_list = kitti_utils.get_objects_from_label(roi_file) roi_boxes3d = kitti_utils.objs_to_boxes3d(roi_obj_list) # roi_scores is not used currently # roi_scores = kitti_utils.objs_to_scores(roi_obj_list) gt_obj_list = self.filtrate_objects(self.get_label(sample_id)) gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list) sample_info = OrderedDict() sample_info["sample_id"] = sample_id sample_info['rpn_xyz'] = rpn_xyz sample_info['rpn_features'] = rpn_features sample_info['rpn_intensity'] = rpn_intensity sample_info['seg_mask'] = seg_mask sample_info['roi_boxes3d'] = roi_boxes3d sample_info['pts_depth'] = np.linalg.norm(rpn_xyz, ord=2, axis=1) sample_info['gt_boxes3d'] = gt_boxes3d return sample_info def sample_bg_inds(self, hard_bg_inds, easy_bg_inds, bg_rois_per_this_image): if hard_bg_inds.size > 0 and easy_bg_inds.size > 0: hard_bg_rois_num = int(bg_rois_per_this_image * cfg.RCNN.HARD_BG_RATIO) easy_bg_rois_num = bg_rois_per_this_image - hard_bg_rois_num # sampling hard bg rand_num = np.floor(np.random.rand(hard_bg_rois_num) * hard_bg_inds.size).astype(np.int32) hard_bg_inds = hard_bg_inds[rand_num] # sampling easy bg rand_num = np.floor(np.random.rand(easy_bg_rois_num) * easy_bg_inds.size).astype(np.int32) easy_bg_inds = easy_bg_inds[rand_num] bg_inds = np.concatenate([hard_bg_inds, easy_bg_inds], axis=0) elif hard_bg_inds.size > 0 and easy_bg_inds.size == 0: hard_bg_rois_num = bg_rois_per_this_image # sampling hard bg rand_num = np.floor(np.random.rand(hard_bg_rois_num) * hard_bg_inds.size).astype(np.int32) bg_inds = hard_bg_inds[rand_num] elif hard_bg_inds.size == 0 and easy_bg_inds.size > 0: easy_bg_rois_num = bg_rois_per_this_image # sampling easy bg rand_num = np.floor(np.random.rand(easy_bg_rois_num) * easy_bg_inds.size).astype(np.int32) bg_inds = easy_bg_inds[rand_num] else: raise NotImplementedError return bg_inds def aug_roi_by_noise_batch(self, roi_boxes3d, gt_boxes3d, aug_times=10): """ :param roi_boxes3d: (N, 7) :param gt_boxes3d: (N, 7) :return: """ iou_of_rois = np.zeros(roi_boxes3d.shape[0], dtype=np.float32) for k in range(roi_boxes3d.__len__()): temp_iou = cnt = 0 roi_box3d = roi_boxes3d[k] gt_box3d = gt_boxes3d[k] pos_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH) gt_corners = kitti_utils.boxes3d_to_corners3d(gt_box3d.reshape(1, 7), True) aug_box3d = roi_box3d while temp_iou < pos_thresh and cnt < aug_times: if np.random.rand() < 0.2: aug_box3d = roi_box3d # p=0.2 to keep the original roi box else: aug_box3d = self.random_aug_box3d(roi_box3d) aug_corners = kitti_utils.boxes3d_to_corners3d(aug_box3d.reshape(1, 7), True) iou3d = kitti_utils.get_iou3d(aug_corners, gt_corners) temp_iou = iou3d[0][0] cnt += 1 roi_boxes3d[k] = aug_box3d iou_of_rois[k] = temp_iou return roi_boxes3d, iou_of_rois @staticmethod def canonical_transform_batch(pts_input, roi_boxes3d, gt_boxes3d): """ :param pts_input: (N, npoints, 3 + C) :param roi_boxes3d: (N, 7) :param gt_boxes3d: (N, 7) :return: """ roi_ry = roi_boxes3d[:, 6] % (2 * np.pi) # 0 ~ 2pi roi_center = roi_boxes3d[:, 0:3] # shift to center pts_input[:, :, [0, 1, 2]] = pts_input[:, :, [0, 1, 2]] - roi_center.reshape(-1, 1, 3) gt_boxes3d_ct = np.copy(gt_boxes3d) gt_boxes3d_ct[:, 0:3] = gt_boxes3d_ct[:, 0:3] - roi_center # rotate to the direction of head gt_boxes3d_ct = kitti_utils.rotate_pc_along_y_np( gt_boxes3d_ct.reshape(-1, 1, 7), roi_ry, ) # TODO: check here gt_boxes3d_ct = gt_boxes3d_ct.reshape(-1,7) gt_boxes3d_ct[:, 6] = gt_boxes3d_ct[:, 6] - roi_ry pts_input = kitti_utils.rotate_pc_along_y_np( pts_input, roi_ry ) return pts_input, gt_boxes3d_ct def get_rcnn_training_sample_batch(self, index): sample_id = int(self.sample_id_list[index]) rpn_xyz, rpn_features, rpn_intensity, seg_mask = \ self.get_rpn_features(self.rcnn_training_feature_dir, sample_id) # load rois and gt_boxes3d for this sample roi_file = os.path.join(self.rcnn_training_roi_dir, '%06d.txt' % sample_id) roi_obj_list = kitti_utils.get_objects_from_label(roi_file) roi_boxes3d = kitti_utils.objs_to_boxes3d(roi_obj_list) # roi_scores = kitti_utils.objs_to_scores(roi_obj_list) gt_obj_list = self.filtrate_objects(self.get_label(sample_id)) gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list) # calculate original iou iou3d = kitti_utils.get_iou3d(kitti_utils.boxes3d_to_corners3d(roi_boxes3d, True), kitti_utils.boxes3d_to_corners3d(gt_boxes3d, True)) max_overlaps, gt_assignment = iou3d.max(axis=1), iou3d.argmax(axis=1) max_iou_of_gt, roi_assignment = iou3d.max(axis=0), iou3d.argmax(axis=0) roi_assignment = roi_assignment[max_iou_of_gt > 0].reshape(-1) # sample fg, easy_bg, hard_bg fg_rois_per_image = int(np.round(cfg.RCNN.FG_RATIO * cfg.RCNN.ROI_PER_IMAGE)) fg_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH) fg_inds = np.nonzero(max_overlaps >= fg_thresh)[0] fg_inds = np.concatenate((fg_inds, roi_assignment), axis=0) # consider the roi which has max_overlaps with gt as fg easy_bg_inds = np.nonzero((max_overlaps < cfg.RCNN.CLS_BG_THRESH_LO))[0] hard_bg_inds = np.nonzero((max_overlaps < cfg.RCNN.CLS_BG_THRESH) & (max_overlaps >= cfg.RCNN.CLS_BG_THRESH_LO))[0] fg_num_rois = fg_inds.size bg_num_rois = hard_bg_inds.size + easy_bg_inds.size if fg_num_rois > 0 and bg_num_rois > 0: # sampling fg fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois) rand_num = np.random.permutation(fg_num_rois) fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]] # sampling bg bg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE - fg_rois_per_this_image bg_inds = self.sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image) elif fg_num_rois > 0 and bg_num_rois == 0: # sampling fg rand_num = np.floor(np.random.rand(cfg.RCNN.ROI_PER_IMAGE ) * fg_num_rois) # rand_num = torch.from_numpy(rand_num).type_as(gt_boxes3d).long() fg_inds = fg_inds[rand_num] fg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE bg_rois_per_this_image = 0 elif bg_num_rois > 0 and fg_num_rois == 0: # sampling bg bg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE bg_inds = self.sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image) fg_rois_per_this_image = 0 else: import pdb pdb.set_trace() raise NotImplementedError # augment the rois by noise roi_list, roi_iou_list, roi_gt_list = [], [], [] if fg_rois_per_this_image > 0: fg_rois_src = roi_boxes3d[fg_inds].copy() gt_of_fg_rois = gt_boxes3d[gt_assignment[fg_inds]] fg_rois, fg_iou3d = self.aug_roi_by_noise_batch(fg_rois_src, gt_of_fg_rois, aug_times=10) roi_list.append(fg_rois) roi_iou_list.append(fg_iou3d) roi_gt_list.append(gt_of_fg_rois) if bg_rois_per_this_image > 0: bg_rois_src = roi_boxes3d[bg_inds].copy() gt_of_bg_rois = gt_boxes3d[gt_assignment[bg_inds]] bg_rois, bg_iou3d = self.aug_roi_by_noise_batch(bg_rois_src, gt_of_bg_rois, aug_times=1) roi_list.append(bg_rois) roi_iou_list.append(bg_iou3d) roi_gt_list.append(gt_of_bg_rois) rois = np.concatenate(roi_list, axis=0) iou_of_rois = np.concatenate(roi_iou_list, axis=0) gt_of_rois = np.concatenate(roi_gt_list, axis=0) # collect extra features for point cloud pooling if cfg.RCNN.USE_INTENSITY: pts_extra_input_list = [rpn_intensity.reshape(-1, 1), seg_mask.reshape(-1, 1)] else: pts_extra_input_list = [seg_mask.reshape(-1, 1)] if cfg.RCNN.USE_DEPTH: pts_depth = (np.linalg.norm(rpn_xyz, ord=2, axis=1) / 70.0) - 0.5 pts_extra_input_list.append(pts_depth.reshape(-1, 1)) pts_extra_input = np.concatenate(pts_extra_input_list, axis=1) # pts, pts_feature, boxes3d, pool_extra_width, sampled_pt_num pts_input, pts_features, pts_empty_flag = roipool3d_utils.roipool3d_cpu( rpn_xyz, rpn_features, rois, pts_extra_input, cfg.RCNN.POOL_EXTRA_WIDTH, sampled_pt_num=cfg.RCNN.NUM_POINTS, #canonical_transform=False ) # data augmentation if cfg.AUG_DATA and self.mode == 'TRAIN': for k in range(rois.__len__()): aug_pts = pts_input[k, :, 0:3].copy() aug_gt_box3d = gt_of_rois[k].copy() aug_roi_box3d = rois[k].copy() # calculate alpha by ry temp_boxes3d = np.concatenate([aug_roi_box3d.reshape(1, 7), aug_gt_box3d.reshape(1, 7)], axis=0) temp_x, temp_z, temp_ry = temp_boxes3d[:, 0], temp_boxes3d[:, 2], temp_boxes3d[:, 6] temp_beta = np.arctan2(temp_z, temp_x).astype(np.float64) temp_alpha = -np.sign(temp_beta) * np.pi / 2 + temp_beta + temp_ry # data augmentation aug_pts, aug_boxes3d, aug_method = self.data_augmentation(aug_pts, temp_boxes3d, temp_alpha, mustaug=True, stage=2) # assign to original data pts_input[k, :, 0:3] = aug_pts rois[k] = aug_boxes3d[0] gt_of_rois[k] = aug_boxes3d[1] valid_mask = (pts_empty_flag == 0).astype(np.int32) # regression valid mask reg_valid_mask = (iou_of_rois > cfg.RCNN.REG_FG_THRESH).astype(np.int32) & valid_mask # classification label cls_label = (iou_of_rois > cfg.RCNN.CLS_FG_THRESH).astype(np.int32) invalid_mask = (iou_of_rois > cfg.RCNN.CLS_BG_THRESH) & (iou_of_rois < cfg.RCNN.CLS_FG_THRESH) cls_label[invalid_mask] = -1 cls_label[valid_mask == 0] = -1 # canonical transform and sampling pts_input_ct, gt_boxes3d_ct = self.canonical_transform_batch(pts_input, rois, gt_of_rois) pts_input_ = np.concatenate((pts_input_ct, pts_features), axis=-1) sample_info = OrderedDict() sample_info['sample_id'] = sample_id sample_info['pts_input'] = pts_input_ sample_info['pts_feature'] = pts_features sample_info['roi_boxes3d'] = rois sample_info['cls_label'] = cls_label sample_info['reg_valid_mask'] = reg_valid_mask sample_info['gt_boxes3d_ct'] = gt_boxes3d_ct sample_info['gt_of_rois'] = gt_of_rois return sample_info @staticmethod def random_aug_box3d(box3d): """ :param box3d: (7) [x, y, z, h, w, l, ry] random shift, scale, orientation """ if cfg.RCNN.REG_AUG_METHOD == 'single': pos_shift = (np.random.rand(3) - 0.5) # [-0.5 ~ 0.5] hwl_scale = (np.random.rand(3) - 0.5) / (0.5 / 0.15) + 1.0 # angle_rot = (np.random.rand(1) - 0.5) / (0.5 / (np.pi / 12)) # [-pi/12 ~ pi/12] aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot]) return aug_box3d elif cfg.RCNN.REG_AUG_METHOD == 'multiple': # pos_range, hwl_range, angle_range, mean_iou range_config = [[0.2, 0.1, np.pi / 12, 0.7], [0.3, 0.15, np.pi / 12, 0.6], [0.5, 0.15, np.pi / 9, 0.5], [0.8, 0.15, np.pi / 6, 0.3], [1.0, 0.15, np.pi / 3, 0.2]] idx = np.random.randint(len(range_config)) pos_shift = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][0] hwl_scale = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][1] + 1.0 angle_rot = ((np.random.rand(1) - 0.5) / 0.5) * range_config[idx][2] aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot]) return aug_box3d elif cfg.RCNN.REG_AUG_METHOD == 'normal': x_shift = np.random.normal(loc=0, scale=0.3) y_shift = np.random.normal(loc=0, scale=0.2) z_shift = np.random.normal(loc=0, scale=0.3) h_shift = np.random.normal(loc=0, scale=0.25) w_shift = np.random.normal(loc=0, scale=0.15) l_shift = np.random.normal(loc=0, scale=0.5) ry_shift = ((np.random.rand() - 0.5) / 0.5) * np.pi / 12 aug_box3d = np.array([box3d[0] + x_shift, box3d[1] + y_shift, box3d[2] + z_shift, box3d[3] + h_shift, box3d[4] + w_shift, box3d[5] + l_shift, box3d[6] + ry_shift]) return aug_box3d else: raise NotImplementedError def get_proposal_from_file(self, index): sample_id = int(self.image_idx_list[index]) proposal_file = os.path.join(self.rcnn_eval_roi_dir, '%06d.txt' % sample_id) roi_obj_list = kitti_utils.get_objects_from_label(proposal_file) rpn_xyz, rpn_features, rpn_intensity, seg_mask = self.get_rpn_features(self.rcnn_eval_feature_dir, sample_id) pts_rect, pts_rpn_features, pts_intensity = rpn_xyz, rpn_features, rpn_intensity roi_box3d_list, roi_scores = [], [] for obj in roi_obj_list: box3d = np.array([obj.pos[0], obj.pos[1], obj.pos[2], obj.h, obj.w, obj.l, obj.ry], dtype=np.float32) roi_box3d_list.append(box3d.reshape(1, 7)) roi_scores.append(obj.score) roi_boxes3d = np.concatenate(roi_box3d_list, axis=0) # (N, 7) roi_scores = np.array(roi_scores, dtype=np.float32) # (N) if cfg.RCNN.ROI_SAMPLE_JIT: sample_dict = {'sample_id': sample_id, 'rpn_xyz': rpn_xyz, 'rpn_features': rpn_features, 'seg_mask': seg_mask, 'roi_boxes3d': roi_boxes3d, 'roi_scores': roi_scores, 'pts_depth': np.linalg.norm(rpn_xyz, ord=2, axis=1)} if self.mode != 'TEST': gt_obj_list = self.filtrate_objects(self.get_label(sample_id)) gt_boxes3d = kitti_utils.objs_to_boxes3d(gt_obj_list) roi_corners = kitti_utils.boxes3d_to_corners3d(roi_boxes3d,True) gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d,True) iou3d = kitti_utils.get_iou3d(roi_corners, gt_corners) if gt_boxes3d.shape[0] > 0: gt_iou = iou3d.max(axis=1) else: gt_iou = np.zeros(roi_boxes3d.shape[0]).astype(np.float32) sample_dict['gt_boxes3d'] = gt_boxes3d sample_dict['gt_iou'] = gt_iou return sample_dict if cfg.RCNN.USE_INTENSITY: pts_extra_input_list = [pts_intensity.reshape(-1, 1), seg_mask.reshape(-1, 1)] else: pts_extra_input_list = [seg_mask.reshape(-1, 1)] if cfg.RCNN.USE_DEPTH: cur_depth = np.linalg.norm(pts_rect, axis=1, ord=2) cur_depth_norm = (cur_depth / 70.0) - 0.5 pts_extra_input_list.append(cur_depth_norm.reshape(-1, 1)) pts_extra_input = np.concatenate(pts_extra_input_list, axis=1) pts_input, pts_features, _ = roipool3d_utils.roipool3d_cpu( pts_rect, pts_rpn_features, roi_boxes3d, pts_extra_input, cfg.RCNN.POOL_EXTRA_WIDTH, sampled_pt_num=cfg.RCNN.NUM_POINTS, canonical_transform=True ) pts_input = np.concatenate((pts_input, pts_features), axis=-1) sample_dict = OrderedDict() sample_dict['sample_id'] = sample_id sample_dict['pts_input'] = pts_input sample_dict['pts_feature'] = pts_features sample_dict['roi_boxes3d'] = roi_boxes3d sample_dict['roi_scores'] = roi_scores #sample_dict['roi_size'] = roi_boxes3d[:, 3:6] if self.mode == 'TEST': return sample_dict gt_obj_list = self.filtrate_objects(self.get_label(sample_id)) gt_boxes3d = np.zeros((gt_obj_list.__len__(), 7), dtype=np.float32) for k, obj in enumerate(gt_obj_list): gt_boxes3d[k, 0:3], gt_boxes3d[k, 3], gt_boxes3d[k, 4], gt_boxes3d[k, 5], gt_boxes3d[k, 6] \ = obj.pos, obj.h, obj.w, obj.l, obj.ry if gt_boxes3d.__len__() == 0: gt_iou = np.zeros((roi_boxes3d.shape[0]), dtype=np.float32) else: roi_corners = kitti_utils.boxes3d_to_corners3d(roi_boxes3d,True) gt_corners = kitti_utils.boxes3d_to_corners3d(gt_boxes3d,True) iou3d = kitti_utils.get_iou3d(roi_corners, gt_corners) gt_iou = iou3d.max(axis=1) sample_dict['gt_iou'] = gt_iou sample_dict['gt_boxes3d'] = gt_boxes3d return sample_dict def __len__(self): if cfg.RPN.ENABLED: return len(self.sample_id_list) elif cfg.RCNN.ENABLED: if self.mode == 'TRAIN': return len(self.sample_id_list) else: return len(self.image_idx_list) else: raise NotImplementedError def __getitem__(self, index): if cfg.RPN.ENABLED: return self.get_rpn_sample(index) elif cfg.RCNN.ENABLED: if self.mode == 'TRAIN': if cfg.RCNN.ROI_SAMPLE_JIT: return self.get_rcnn_sample_jit(index) else: return self.get_rcnn_training_sample_batch(index) else: return self.get_proposal_from_file(index) else: raise NotImplementedError def padding_batch(self, batch_data, batch_size): max_roi = 0 max_gt = 0 for k in range(batch_size): # roi_boxes3d max_roi = max(max_roi, batch_data[k][3].shape[0]) # gt_boxes3d max_gt = max(max_gt, batch_data[k][-1].shape[0]) batch_roi_boxes3d = np.zeros((batch_size, max_roi, 7)) batch_gt_boxes3d = np.zeros((batch_size, max_gt, 7), dtype=np.float32) for i, data in enumerate(batch_data): roi_num = data[3].shape[0] gt_num = data[-1].shape[0] batch_roi_boxes3d[i,:roi_num,:] = data[3] batch_gt_boxes3d[i,:gt_num,:] = data[-1] new_batch = [] for i, data in enumerate(batch_data): new_batch.append(data[:3]) # roi_boxes3d new_batch[i].append(batch_roi_boxes3d[i]) # ... new_batch[i].extend(data[4:7]) # gt_boxes3d new_batch[i].append(batch_gt_boxes3d[i]) return new_batch def padding_batch_eval(self, batch_data, batch_size): max_pts = 0 max_feats = 0 max_roi = 0 max_score = 0 max_iou = 0 max_gt = 0 for k in range(batch_size): # pts_input max_pts = max(max_pts, batch_data[k][1].shape[0]) # pts_feature max_feats = max(max_feats, batch_data[k][2].shape[0]) # roi_boxes3d max_roi = max(max_roi, batch_data[k][3].shape[0]) # gt_iou max_iou = max(max_iou, batch_data[k][-2].shape[0]) # gt_boxes3d max_gt = max(max_gt, batch_data[k][-1].shape[0]) batch_pts_input = np.zeros((batch_size, max_pts, 512, 133), dtype=np.float32) batch_pts_feat = np.zeros((batch_size, max_feats, 512, 128), dtype=np.float32) batch_roi_boxes3d = np.zeros((batch_size, max_roi, 7), dtype=np.float32) batch_gt_iou = np.zeros((batch_size, max_iou), dtype=np.float32) batch_gt_boxes3d = np.zeros((batch_size, max_gt, 7), dtype=np.float32) for i, data in enumerate(batch_data): # num pts_num = data[1].shape[0] pts_feat_num = data[2].shape[0] roi_num = data[3].shape[0] iou_num = data[-2].shape[0] gt_num = data[-1].shape[0] # data batch_pts_input[i, :pts_num, :, :] = data[1] batch_pts_feat[i, :pts_feat_num, :, :] = data[2] batch_roi_boxes3d[i,:roi_num,:] = data[3] batch_gt_iou[i,:iou_num] = data[-2] batch_gt_boxes3d[i,:gt_num,:] = data[-1] new_batch = [] for i, data in enumerate(batch_data): new_batch.append(data[:1]) new_batch[i].append(batch_pts_input[i]) new_batch[i].append(batch_pts_feat[i]) new_batch[i].append(batch_roi_boxes3d[i]) new_batch[i].append(data[4]) new_batch[i].append(batch_gt_iou[i]) new_batch[i].append(batch_gt_boxes3d[i]) return new_batch def get_reader(self, batch_size, fields, drop_last=False): def reader(): batch_out = [] idxs = np.arange(self.__len__()) if self.mode == 'TRAIN': np.random.shuffle(idxs) for idx in idxs: sample_all = self.__getitem__(idx) sample = [sample_all[f] for f in fields] if has_empty(sample): logger.info("sample field: %d has empty field"%len(sample)) continue batch_out.append(sample) if len(batch_out) >= batch_size: if cfg.RPN.ENABLED: yield batch_out else: if self.mode == 'TRAIN': yield self.padding_batch(batch_out, batch_size) elif self.mode == 'EVAL': # batch_size can should be 1 in rcnn_offline eval currently # if batch_size > 1, batch should be padded as follow # yield self.padding_batch_eval(batch_out, batch_size) yield batch_out else: logger.error("not only support train/eval padding") batch_out = [] if not drop_last: if len(batch_out) > 0: yield batch_out return reader def get_multiprocess_reader(self, batch_size, fields, proc_num=8, max_queue_len=128, drop_last=False): def read_to_queue(idxs, queue): for idx in idxs: sample_all = self.__getitem__(idx) sample = [sample_all[f] for f in fields] queue.put(sample) queue.put(None) def reader(): sample_num = self.__len__() idxs = np.arange(self.__len__()) if self.mode == 'TRAIN': np.random.shuffle(idxs) proc_idxs = [] proc_sample_num = int(sample_num / proc_num) start_idx = 0 for i in range(proc_num - 1): proc_idxs.append(idxs[start_idx:start_idx + proc_sample_num]) start_idx += proc_sample_num proc_idxs.append(idxs[start_idx:]) queue = multiprocessing.Queue(max_queue_len) p_list = [] for i in range(proc_num): p_list.append(multiprocessing.Process( target=read_to_queue, args=(proc_idxs[i], queue,))) p_list[-1].start() finish_num = 0 batch_out = [] while finish_num < len(p_list): sample = queue.get() if sample is None: finish_num += 1 else: batch_out.append(sample) if len(batch_out) == batch_size: yield batch_out batch_out = [] # join process for p in p_list: if p.is_alive(): p.join() return reader