image_util.py 18.0 KB
Newer Older
1 2 3 4 5
from PIL import Image, ImageEnhance, ImageDraw
from PIL import ImageFile
import numpy as np
import random
import math
6
import cv2
7 8 9 10 11

ImageFile.LOAD_TRUNCATED_IMAGES = True  #otherwise IOError raised image file is truncated


class sampler():
Q
qingqing01 已提交
12 13 14 15 16 17 18 19 20
    def __init__(self,
                 max_sample,
                 max_trial,
                 min_scale,
                 max_scale,
                 min_aspect_ratio,
                 max_aspect_ratio,
                 min_jaccard_overlap,
                 max_jaccard_overlap,
21 22
                 min_object_coverage,
                 max_object_coverage,
Q
qingqing01 已提交
23
                 use_square=False):
24 25 26 27 28 29 30 31
        self.max_sample = max_sample
        self.max_trial = max_trial
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.min_jaccard_overlap = min_jaccard_overlap
        self.max_jaccard_overlap = max_jaccard_overlap
32 33
        self.min_object_coverage = min_object_coverage
        self.max_object_coverage = max_object_coverage
Q
qingqing01 已提交
34
        self.use_square = use_square
35 36 37 38 39 40 41 42 43 44


class bbox():
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def intersect_bbox(bbox1, bbox2):
    if bbox2.xmin > bbox1.xmax or bbox2.xmax < bbox1.xmin or \
        bbox2.ymin > bbox1.ymax or bbox2.ymax < bbox1.ymin:
        intersection_box = bbox(0.0, 0.0, 0.0, 0.0)
    else:
        intersection_box = bbox(
            max(bbox1.xmin, bbox2.xmin),
            max(bbox1.ymin, bbox2.ymin),
            min(bbox1.xmax, bbox2.xmax), min(bbox1.ymax, bbox2.ymax))
    return intersection_box


def bbox_coverage(bbox1, bbox2):
    inter_box = intersect_bbox(bbox1, bbox2)
    intersect_size = bbox_area(inter_box)

    if intersect_size > 0:
        bbox1_size = bbox_area(bbox1)
        return intersect_size / bbox1_size
    else:
        return 0.


68
def bbox_area(src_bbox):
69 70 71 72 73 74
    if src_bbox.xmax < src_bbox.xmin or src_bbox.ymax < src_bbox.ymin:
        return 0.
    else:
        width = src_bbox.xmax - src_bbox.xmin
        height = src_bbox.ymax - src_bbox.ymin
        return width * height
75 76


Q
qingqing01 已提交
77
def generate_sample(sampler, image_width, image_height):
78
    scale = random.uniform(sampler.min_scale, sampler.max_scale)
Q
qingqing01 已提交
79 80 81 82 83
    aspect_ratio = random.uniform(sampler.min_aspect_ratio,
                                  sampler.max_aspect_ratio)
    aspect_ratio = max(aspect_ratio, (scale**2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))

84 85
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
Q
qingqing01 已提交
86 87 88 89 90 91 92 93

    # guarantee a squared image patch after cropping
    if sampler.use_square:
        if image_height < image_width:
            bbox_width = bbox_height * image_height / image_width
        else:
            bbox_height = bbox_width * image_width / image_height

94 95 96 97 98 99 100 101 102 103
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = random.uniform(0, xmin_bound)
    ymin = random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


Q
qingqing01 已提交
104 105 106 107 108 109 110
def data_anchor_sampling(sampler, bbox_labels, image_width, image_height,
                         scale_array, resize_width, resize_height):
    num_gt = len(bbox_labels)
    # np.random.randint range: [low, high)
    rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0

    if num_gt != 0:
111 112 113 114
        norm_xmin = bbox_labels[rand_idx][1]
        norm_ymin = bbox_labels[rand_idx][2]
        norm_xmax = bbox_labels[rand_idx][3]
        norm_ymax = bbox_labels[rand_idx][4]
Q
qingqing01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

        xmin = norm_xmin * image_width
        ymin = norm_ymin * image_height
        wid = image_width * (norm_xmax - norm_xmin)
        hei = image_height * (norm_ymax - norm_ymin)
        range_size = 0

        for scale_ind in range(0, len(scale_array) - 1):
            area = wid * hei
            if area > scale_array[scale_ind] ** 2 and area < \
                    scale_array[scale_ind + 1] ** 2:
                range_size = scale_ind + 1
                break

        scale_choose = 0.0
        if range_size == 0:
            rand_idx_size = range_size + 1
        else:
            # np.random.randint range: [low, high)
Q
qingqing01 已提交
134 135
            rng_rand_size = np.random.randint(0, range_size + 1)
            rand_idx_size = rng_rand_size % (range_size + 1)
Q
qingqing01 已提交
136

Q
qingqing01 已提交
137 138 139 140
        min_resize_val = scale_array[rand_idx_size] / 2.0
        max_resize_val = min(2.0 * scale_array[rand_idx_size],
                             2 * math.sqrt(wid * hei))
        scale_choose = random.uniform(min_resize_val, max_resize_val)
Q
qingqing01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        sample_bbox_size = wid * resize_width / scale_choose

        w_off_orig = 0.0
        h_off_orig = 0.0
        if sample_bbox_size < max(image_height, image_width):
            if wid <= sample_bbox_size:
                w_off_orig = random.uniform(xmin + wid - sample_bbox_size, xmin)
            else:
                w_off_orig = random.uniform(xmin, xmin + wid - sample_bbox_size)

            if hei <= sample_bbox_size:
                h_off_orig = random.uniform(ymin + hei - sample_bbox_size, ymin)
            else:
                h_off_orig = random.uniform(ymin, ymin + hei - sample_bbox_size)

        else:
            w_off_orig = random.uniform(image_width - sample_bbox_size, 0.0)
            h_off_orig = random.uniform(image_height - sample_bbox_size, 0.0)

        w_off_orig = math.floor(w_off_orig)
        h_off_orig = math.floor(h_off_orig)

        # Figure out top left coordinates.
        w_off = 0.0
        h_off = 0.0
        w_off = float(w_off_orig / image_width)
        h_off = float(h_off_orig / image_height)

        sampled_bbox = bbox(w_off, h_off,
                            w_off + float(sample_bbox_size / image_width),
                            h_off + float(sample_bbox_size / image_height))
        return sampled_bbox


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
            sample_bbox.xmax <= object_bbox.xmin or \
            sample_bbox.ymin >= object_bbox.ymax or \
            sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (
        intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (
        sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
195 196 197 198 199 200 201 202 203
    if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
        has_jaccard_overlap = False
    else:
        has_jaccard_overlap = True
    if sampler.min_object_coverage == 0 and sampler.max_object_coverage == 0:
        has_object_coverage = False
    else:
        has_object_coverage = True

204
    if not has_jaccard_overlap and not has_object_coverage:
205
        return True
206
    found = False
207
    for i in range(len(bbox_labels)):
208 209
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        if has_jaccard_overlap:
            overlap = jaccard_overlap(sample_bbox, object_bbox)
            if sampler.min_jaccard_overlap != 0 and \
                    overlap < sampler.min_jaccard_overlap:
                continue
            if sampler.max_jaccard_overlap != 0 and \
                    overlap > sampler.max_jaccard_overlap:
                continue
            found = True
        if has_object_coverage:
            object_coverage = bbox_coverage(object_bbox, sample_bbox)
            if sampler.min_object_coverage != 0 and \
                    object_coverage < sampler.min_object_coverage:
                continue
            if sampler.max_object_coverage != 0 and \
                    object_coverage > sampler.max_object_coverage:
                continue
            found = True
        if found:
            return True
    return found
231 232


Q
qingqing01 已提交
233 234
def generate_batch_samples(batch_sampler, bbox_labels, image_width,
                           image_height):
235 236 237 238 239 240
    sampled_bbox = []
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
Q
qingqing01 已提交
241
            sample_bbox = generate_sample(sampler, image_width, image_height)
242 243 244
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
Q
qingqing01 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    return sampled_bbox


def generate_batch_random_samples(batch_sampler, bbox_labels, image_width,
                                  image_height, scale_array, resize_width,
                                  resize_height):
    sampled_bbox = []
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
            sample_bbox = data_anchor_sampling(
                sampler, bbox_labels, image_width, image_height, scale_array,
                resize_width, resize_height)
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    return sampled_bbox


def clip_bbox(src_bbox):
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
        center_x <= sample_bbox.xmax and \
        center_y >= sample_bbox.ymin and \
        center_y <= sample_bbox.ymax:
        return True
    return False


Q
qingqing01 已提交
285 286 287 288 289 290 291 292
def project_bbox(object_bbox, sample_bbox):
    if object_bbox.xmin >= sample_bbox.xmax or \
       object_bbox.xmax <= sample_bbox.xmin or \
       object_bbox.ymin >= sample_bbox.ymax or \
       object_bbox.ymax <= sample_bbox.ymin:
        return False
    else:
        proj_bbox = bbox(0, 0, 0, 0)
293 294 295 296 297 298 299 300
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
Q
qingqing01 已提交
301 302 303 304 305 306 307 308 309
            return proj_bbox
        else:
            return False


def transform_labels(bbox_labels, sample_bbox):
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
310 311
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
Q
qingqing01 已提交
312 313 314 315
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        proj_bbox = project_bbox(object_bbox, sample_bbox)
        if proj_bbox:
316 317 318 319 320 321 322 323 324 325
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
            sample_label = sample_label + bbox_labels[i][5:]
            sample_labels.append(sample_label)
    return sample_labels


326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
def transform_labels_sampling(bbox_labels, sample_bbox, resize_val,
                              min_face_size):
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        proj_bbox = project_bbox(object_bbox, sample_bbox)
        if proj_bbox:
            real_width = float((proj_bbox.xmax - proj_bbox.xmin) * resize_val)
            real_height = float((proj_bbox.ymax - proj_bbox.ymin) * resize_val)
            if real_width * real_height < float(min_face_size * min_face_size):
                continue
            else:
                sample_label.append(bbox_labels[i][0])
                sample_label.append(float(proj_bbox.xmin))
                sample_label.append(float(proj_bbox.ymin))
                sample_label.append(float(proj_bbox.xmax))
                sample_label.append(float(proj_bbox.ymax))
                sample_label = sample_label + bbox_labels[i][5:]
                sample_labels.append(sample_label)
    return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height,
               resize_width, resize_height, min_face_size):
354 355 356 357 358
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
Q
qingqing01 已提交
359

360
    sample_img = img[ymin:ymax, xmin:xmax]
361 362 363
    resize_val = resize_width
    sample_labels = transform_labels_sampling(bbox_labels, sample_bbox,
                                              resize_val, min_face_size)
364 365 366
    return sample_img, sample_labels


Q
qingqing01 已提交
367
def crop_image_sampling(img, bbox_labels, sample_bbox, image_width,
368 369
                        image_height, resize_width, resize_height,
                        min_face_size):
Q
qingqing01 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    # no clipping here
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)

    w_off = xmin
    h_off = ymin
    width = xmax - xmin
    height = ymax - ymin

    cross_xmin = max(0.0, float(w_off))
    cross_ymin = max(0.0, float(h_off))
    cross_xmax = min(float(w_off + width - 1.0), float(image_width))
    cross_ymax = min(float(h_off + height - 1.0), float(image_height))
    cross_width = cross_xmax - cross_xmin
    cross_height = cross_ymax - cross_ymin

    roi_xmin = 0 if w_off >= 0 else abs(w_off)
    roi_ymin = 0 if h_off >= 0 else abs(h_off)
    roi_width = cross_width
    roi_height = cross_height

Q
qingqing01 已提交
393 394 395 396 397 398 399 400 401 402
    roi_y1 = int(roi_ymin)
    roi_y2 = int(roi_ymin + roi_height)
    roi_x1 = int(roi_xmin)
    roi_x2 = int(roi_xmin + roi_width)

    cross_y1 = int(cross_ymin)
    cross_y2 = int(cross_ymin + cross_height)
    cross_x1 = int(cross_xmin)
    cross_x2 = int(cross_xmin + cross_width)

403
    sample_img = np.zeros((height, width, 3))
Q
qingqing01 已提交
404 405
    sample_img[roi_y1 : roi_y2, roi_x1 : roi_x2] = \
        img[cross_y1 : cross_y2, cross_x1 : cross_x2]
Q
qingqing01 已提交
406 407 408 409

    sample_img = cv2.resize(
        sample_img, (resize_width, resize_height), interpolation=cv2.INTER_AREA)

410 411 412
    resize_val = resize_width
    sample_labels = transform_labels_sampling(bbox_labels, sample_bbox,
                                              resize_val, min_face_size)
Q
qingqing01 已提交
413 414 415
    return sample_img, sample_labels


416 417
def random_brightness(img, settings):
    prob = random.uniform(0, 1)
Q
qingqing01 已提交
418 419 420
    if prob < settings.brightness_prob:
        delta = random.uniform(-settings.brightness_delta,
                               settings.brightness_delta) + 1
421 422 423 424 425 426
        img = ImageEnhance.Brightness(img).enhance(delta)
    return img


def random_contrast(img, settings):
    prob = random.uniform(0, 1)
Q
qingqing01 已提交
427 428 429
    if prob < settings.contrast_prob:
        delta = random.uniform(-settings.contrast_delta,
                               settings.contrast_delta) + 1
430 431 432 433 434 435
        img = ImageEnhance.Contrast(img).enhance(delta)
    return img


def random_saturation(img, settings):
    prob = random.uniform(0, 1)
Q
qingqing01 已提交
436 437 438
    if prob < settings.saturation_prob:
        delta = random.uniform(-settings.saturation_delta,
                               settings.saturation_delta) + 1
439 440 441 442 443 444
        img = ImageEnhance.Color(img).enhance(delta)
    return img


def random_hue(img, settings):
    prob = random.uniform(0, 1)
Q
qingqing01 已提交
445 446
    if prob < settings.hue_prob:
        delta = random.uniform(-settings.hue_delta, settings.hue_delta)
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        img_hsv = np.array(img.convert('HSV'))
        img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
        img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
    return img


def distort_image(img, settings):
    prob = random.uniform(0, 1)
    # Apply different distort order
    if prob > 0.5:
        img = random_brightness(img, settings)
        img = random_contrast(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
    else:
        img = random_brightness(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
        img = random_contrast(img, settings)
    return img


def expand_image(img, bbox_labels, img_width, img_height, settings):
    prob = random.uniform(0, 1)
Q
qingqing01 已提交
471 472 473
    if prob < settings.expand_prob:
        if settings.expand_max_ratio - 1 >= 0.01:
            expand_ratio = random.uniform(1, settings.expand_max_ratio)
474 475 476 477 478 479 480 481
            height = int(img_height * expand_ratio)
            width = int(img_width * expand_ratio)
            h_off = math.floor(random.uniform(0, height - img_height))
            w_off = math.floor(random.uniform(0, width - img_width))
            expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
                               (width - w_off) / img_width,
                               (height - h_off) / img_height)
            expand_img = np.ones((height, width, 3))
Q
qingqing01 已提交
482
            expand_img = np.uint8(expand_img * np.squeeze(settings.img_mean))
483 484 485 486 487
            expand_img = Image.fromarray(expand_img)
            expand_img.paste(img, (int(w_off), int(h_off)))
            bbox_labels = transform_labels(bbox_labels, expand_bbox)
            return expand_img, bbox_labels, width, height
    return img, bbox_labels, img_width, img_height