image_util.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
from PIL import Image, ImageEnhance, ImageDraw
from PIL import ImageFile
import numpy as np
import random
import math

ImageFile.LOAD_TRUNCATED_IMAGES = True  #otherwise IOError raised image file is truncated


class sampler():
Q
qingqing01 已提交
11 12 13 14 15 16 17 18 19
    def __init__(self,
                 max_sample,
                 max_trial,
                 min_scale,
                 max_scale,
                 min_aspect_ratio,
                 max_aspect_ratio,
                 min_jaccard_overlap,
                 max_jaccard_overlap,
20 21
                 min_object_coverage,
                 max_object_coverage,
Q
qingqing01 已提交
22
                 use_square=False):
23 24 25 26 27 28 29 30
        self.max_sample = max_sample
        self.max_trial = max_trial
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.min_jaccard_overlap = min_jaccard_overlap
        self.max_jaccard_overlap = max_jaccard_overlap
31 32
        self.min_object_coverage = min_object_coverage
        self.max_object_coverage = max_object_coverage
Q
qingqing01 已提交
33
        self.use_square = use_square
34 35 36 37 38 39 40 41 42 43


class bbox():
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def intersect_bbox(bbox1, bbox2):
    if bbox2.xmin > bbox1.xmax or bbox2.xmax < bbox1.xmin or \
        bbox2.ymin > bbox1.ymax or bbox2.ymax < bbox1.ymin:
        intersection_box = bbox(0.0, 0.0, 0.0, 0.0)
    else:
        intersection_box = bbox(
            max(bbox1.xmin, bbox2.xmin),
            max(bbox1.ymin, bbox2.ymin),
            min(bbox1.xmax, bbox2.xmax), min(bbox1.ymax, bbox2.ymax))
    return intersection_box


def bbox_coverage(bbox1, bbox2):
    inter_box = intersect_bbox(bbox1, bbox2)
    intersect_size = bbox_area(inter_box)

    if intersect_size > 0:
        bbox1_size = bbox_area(bbox1)
        return intersect_size / bbox1_size
    else:
        return 0.


67
def bbox_area(src_bbox):
68 69 70 71 72 73
    if src_bbox.xmax < src_bbox.xmin or src_bbox.ymax < src_bbox.ymin:
        return 0.
    else:
        width = src_bbox.xmax - src_bbox.xmin
        height = src_bbox.ymax - src_bbox.ymin
        return width * height
74 75


Q
qingqing01 已提交
76
def generate_sample(sampler, image_width, image_height):
77
    scale = random.uniform(sampler.min_scale, sampler.max_scale)
Q
qingqing01 已提交
78 79 80 81 82
    aspect_ratio = random.uniform(sampler.min_aspect_ratio,
                                  sampler.max_aspect_ratio)
    aspect_ratio = max(aspect_ratio, (scale**2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))

83 84
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
Q
qingqing01 已提交
85 86 87 88 89 90 91 92

    # guarantee a squared image patch after cropping
    if sampler.use_square:
        if image_height < image_width:
            bbox_width = bbox_height * image_height / image_width
        else:
            bbox_height = bbox_width * image_width / image_height

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = random.uniform(0, xmin_bound)
    ymin = random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
            sample_bbox.xmax <= object_bbox.xmin or \
            sample_bbox.ymin >= object_bbox.ymax or \
            sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (
        intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (
        sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
123 124 125
    has_jaccard_overlap = False if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0 else True
    has_object_coverage = False if sampler.min_object_coverage == 0 and sampler.max_object_coverage == 0 else True
    if not has_jaccard_overlap and not has_object_coverage:
126
        return True
127
    found = False
128
    for i in range(len(bbox_labels)):
129 130
        object_bbox = bbox(bbox_labels[i][0], bbox_labels[i][1],
                           bbox_labels[i][2], bbox_labels[i][3])
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        if has_jaccard_overlap:
            overlap = jaccard_overlap(sample_bbox, object_bbox)
            if sampler.min_jaccard_overlap != 0 and \
                    overlap < sampler.min_jaccard_overlap:
                continue
            if sampler.max_jaccard_overlap != 0 and \
                    overlap > sampler.max_jaccard_overlap:
                continue
            found = True
        if has_object_coverage:
            object_coverage = bbox_coverage(object_bbox, sample_bbox)
            if sampler.min_object_coverage != 0 and \
                    object_coverage < sampler.min_object_coverage:
                continue
            if sampler.max_object_coverage != 0 and \
                    object_coverage > sampler.max_object_coverage:
                continue
            found = True
        if found:
            return True
    return found
152 153


Q
qingqing01 已提交
154 155
def generate_batch_samples(batch_sampler, bbox_labels, image_width,
                           image_height):
156 157 158 159 160 161 162 163
    sampled_bbox = []
    index = []
    c = 0
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
Q
qingqing01 已提交
164
            sample_bbox = generate_sample(sampler, image_width, image_height)
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
                index.append(c)
        c = c + 1
    return sampled_bbox


def clip_bbox(src_bbox):
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
        center_x <= sample_bbox.xmax and \
        center_y >= sample_bbox.ymin and \
        center_y <= sample_bbox.ymax:
        return True
    return False


Q
qingqing01 已提交
192 193 194 195 196 197 198 199
def project_bbox(object_bbox, sample_bbox):
    if object_bbox.xmin >= sample_bbox.xmax or \
       object_bbox.xmax <= sample_bbox.xmin or \
       object_bbox.ymin >= sample_bbox.ymax or \
       object_bbox.ymax <= sample_bbox.ymin:
        return False
    else:
        proj_bbox = bbox(0, 0, 0, 0)
200 201 202 203 204 205 206 207
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
Q
qingqing01 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            return proj_bbox
        else:
            return False


def transform_labels(bbox_labels, sample_bbox):
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][0], bbox_labels[i][1],
                           bbox_labels[i][2], bbox_labels[i][3])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        proj_bbox = project_bbox(object_bbox, sample_bbox)
        if proj_bbox:
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
            sample_label = sample_label + bbox_labels[i][5:]
            sample_labels.append(sample_label)
    return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
    sample_img = img[ymin:ymax, xmin:xmax]
    sample_labels = transform_labels(bbox_labels, sample_bbox)
    return sample_img, sample_labels


def random_brightness(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._brightness_prob:
        delta = random.uniform(-settings._brightness_delta,
                               settings._brightness_delta) + 1
        img = ImageEnhance.Brightness(img).enhance(delta)
    return img


def random_contrast(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._contrast_prob:
        delta = random.uniform(-settings._contrast_delta,
                               settings._contrast_delta) + 1
        img = ImageEnhance.Contrast(img).enhance(delta)
    return img


def random_saturation(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._saturation_prob:
        delta = random.uniform(-settings._saturation_delta,
                               settings._saturation_delta) + 1
        img = ImageEnhance.Color(img).enhance(delta)
    return img


def random_hue(img, settings):
    prob = random.uniform(0, 1)
    if prob < settings._hue_prob:
        delta = random.uniform(-settings._hue_delta, settings._hue_delta)
        img_hsv = np.array(img.convert('HSV'))
        img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
        img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
    return img


def distort_image(img, settings):
    prob = random.uniform(0, 1)
    # Apply different distort order
    if prob > 0.5:
        img = random_brightness(img, settings)
        img = random_contrast(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
    else:
        img = random_brightness(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
        img = random_contrast(img, settings)
    return img


def expand_image(img, bbox_labels, img_width, img_height, settings):
    prob = random.uniform(0, 1)
    if prob < settings._expand_prob:
        if settings._expand_max_ratio - 1 >= 0.01:
            expand_ratio = random.uniform(1, settings._expand_max_ratio)
            height = int(img_height * expand_ratio)
            width = int(img_width * expand_ratio)
            h_off = math.floor(random.uniform(0, height - img_height))
            w_off = math.floor(random.uniform(0, width - img_width))
            expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
                               (width - w_off) / img_width,
                               (height - h_off) / img_height)
            expand_img = np.ones((height, width, 3))
            expand_img = np.uint8(expand_img * np.squeeze(settings._img_mean))
            expand_img = Image.fromarray(expand_img)
            expand_img.paste(img, (int(w_off), int(h_off)))
            bbox_labels = transform_labels(bbox_labels, expand_bbox)
            return expand_img, bbox_labels, width, height
    return img, bbox_labels, img_width, img_height