data_reader.py 18.6 KB
Newer Older
1
"""This module contains data processing related logic.
Z
zhxfl 已提交
2
"""
3 4 5 6
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
zhxfl 已提交
7 8
import random
import struct
Y
yangyaming 已提交
9 10 11 12
import Queue
import time
import numpy as np
from threading import Thread
Y
yangyaming 已提交
13
import signal
Y
yangyaming 已提交
14
from multiprocessing import Manager, Process
15 16
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
Y
yangyaming 已提交
17
from data_utils.util import suppress_complaints, suppress_signal
18
from data_utils.util import CriticalException, ForceExitWrapper
19 20 21


class SampleInfo(object):
Y
yangyaming 已提交
22
    """SampleInfo holds the necessary information to load a sample from disk.
23 24 25 26 27 28 29 30

    Args:
        feature_bin_path (str): File containing the feature data.
        feature_start (int): Start position of the sample's feature data.
        feature_size (int): Byte count of the sample's feature data.
        feature_frame_num (int): Time length of the sample.
        feature_dim (int): Feature dimension of one frame.
        label_bin_path (str): File containing the label data.
Y
Yibing Liu 已提交
31
        label_size (int): Byte count of the sample's label data.
32
        label_frame_num (int): Label number of the sample.
Z
zhxfl 已提交
33 34
    """

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    def __init__(self, feature_bin_path, feature_start, feature_size,
                 feature_frame_num, feature_dim, label_bin_path, label_start,
                 label_size, label_frame_num):
        self.feature_bin_path = feature_bin_path
        self.feature_start = feature_start
        self.feature_size = feature_size
        self.feature_frame_num = feature_frame_num
        self.feature_dim = feature_dim

        self.label_bin_path = label_bin_path
        self.label_start = label_start
        self.label_size = label_size
        self.label_frame_num = label_frame_num


class SampleInfoBucket(object):
    """SampleInfoBucket contains paths of several description files. Feature
Y
Yibing Liu 已提交
52 53 54
    description file contains necessary information (including path of binary
    data, sample start position, sample byte number etc.) to access samples'
    feature data and the same with the label description file. SampleInfoBucket
Y
yangyaming 已提交
55
    is the minimum unit to do shuffle.
56 57

    Args:
Y
Yibing Liu 已提交
58
        feature_bin_paths (list|tuple): Files containing the binary feature
59
                                        data.
Y
Yibing Liu 已提交
60 61
        feature_desc_paths (list|tuple): Files containing the description of
                                         samples' feature data.
62 63 64
        label_bin_paths (list|tuple): Files containing the binary label data.
        label_desc_paths (list|tuple): Files containing the description of
                                       samples' label data.
Y
Yibing Liu 已提交
65
        split_perturb(int): Maximum perturbation value for length of
Z
zhxfl 已提交
66
                            sub-sentence when splitting long sentence.
Y
Yibing Liu 已提交
67
        split_sentence_threshold(int): Sentence whose length larger than
Z
zhxfl 已提交
68
                                the value will trigger split operation.
Y
Yibing Liu 已提交
69
        split_sub_sentence_len(int): sub-sentence length is equal to
Z
zhxfl 已提交
70
                                    (split_sub_sentence_len + rand() % split_perturb).
Z
zhxfl 已提交
71
    """
72

73 74 75 76 77 78 79 80
    def __init__(self,
                 feature_bin_paths,
                 feature_desc_paths,
                 label_bin_paths,
                 label_desc_paths,
                 split_perturb=50,
                 split_sentence_threshold=512,
                 split_sub_sentence_len=256):
81 82 83 84 85 86 87 88 89 90
        block_num = len(label_bin_paths)
        assert len(label_desc_paths) == block_num
        assert len(feature_bin_paths) == block_num
        assert len(feature_desc_paths) == block_num
        self._block_num = block_num

        self._feature_bin_paths = feature_bin_paths
        self._feature_desc_paths = feature_desc_paths
        self._label_bin_paths = label_bin_paths
        self._label_desc_paths = label_desc_paths
91 92 93
        self._split_perturb = split_perturb
        self._split_sentence_threshold = split_sentence_threshold
        self._split_sub_sentence_len = split_sub_sentence_len
Z
zhxfl 已提交
94
        self._rng = random.Random(0)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    def generate_sample_info_list(self):
        sample_info_list = []
        for block_idx in xrange(self._block_num):
            label_bin_path = self._label_bin_paths[block_idx]
            label_desc_path = self._label_desc_paths[block_idx]
            feature_bin_path = self._feature_bin_paths[block_idx]
            feature_desc_path = self._feature_desc_paths[block_idx]

            label_desc_lines = open(label_desc_path).readlines()
            feature_desc_lines = open(feature_desc_path).readlines()

            sample_num = int(label_desc_lines[0].split()[1])
            assert sample_num == int(feature_desc_lines[0].split()[1])

            for i in xrange(sample_num):
                feature_desc_split = feature_desc_lines[i + 1].split()
                feature_start = int(feature_desc_split[2])
                feature_size = int(feature_desc_split[3])
                feature_frame_num = int(feature_desc_split[4])
                feature_dim = int(feature_desc_split[5])

                label_desc_split = label_desc_lines[i + 1].split()
                label_start = int(label_desc_split[2])
                label_size = int(label_desc_split[3])
                label_frame_num = int(label_desc_split[4])
Z
zhxfl 已提交
121
                assert feature_frame_num == label_frame_num
122

Z
zhxfl 已提交
123 124 125 126
                if self._split_sentence_threshold == -1 or \
                        self._split_perturb == -1 or \
                        self._split_sub_sentence_len == -1 \
                        or self._split_sentence_threshold >= feature_frame_num:
127 128 129 130 131
                    sample_info_list.append(
                        SampleInfo(feature_bin_path, feature_start,
                                   feature_size, feature_frame_num, feature_dim,
                                   label_bin_path, label_start, label_size,
                                   label_frame_num))
Y
Yibing Liu 已提交
132
                #split sentence
133 134 135 136 137 138
                else:
                    cur_frame_pos = 0
                    cur_frame_len = 0
                    remain_frame_num = feature_frame_num
                    while True:
                        if remain_frame_num > self._split_sentence_threshold:
Z
zhxfl 已提交
139 140
                            cur_frame_len = self._split_sub_sentence_len + \
                                    self._rng.randint(0, self._split_perturb)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                            if cur_frame_len > remain_frame_num:
                                cur_frame_len = remain_frame_num
                        else:
                            cur_frame_len = remain_frame_num

                        sample_info_list.append(
                            SampleInfo(
                                feature_bin_path, feature_start + cur_frame_pos
                                * feature_dim * 4, cur_frame_len * feature_dim *
                                4, cur_frame_len, feature_dim, label_bin_path,
                                label_start + cur_frame_pos * 4, cur_frame_len *
                                4, cur_frame_len))

                        remain_frame_num -= cur_frame_len
                        cur_frame_pos += cur_frame_len
                        if remain_frame_num <= 0:
                            break

159 160 161 162 163 164 165 166 167
        return sample_info_list


class EpochEndSignal():
    pass


class DataReader(object):
    """DataReader provides basic audio sample preprocessing pipeline including
Y
yangyaming 已提交
168
    data loading and data augmentation.
169 170

    Args:
Y
yangyaming 已提交
171 172
        feature_file_list (str): File containing paths of feature data file and
                                 corresponding description file.
Y
Yibing Liu 已提交
173
        label_file_list (str): File containing paths of label data file and
Y
yangyaming 已提交
174 175
                               corresponding description file.
        drop_frame_len (int): Samples whose label length above the value will be
176
                              dropped.(Using '-1' to disable the policy)
177
        process_num (int): Number of processes for processing data.
Y
Yibing Liu 已提交
178
        sample_buffer_size (int): Buffer size to indicate the maximum samples
179
                                  cached.
Y
Yibing Liu 已提交
180
        sample_info_buffer_size (int): Buffer size to indicate the maximum
181
                                       sample information cached.
Y
Yibing Liu 已提交
182
        batch_buffer_size (int): Buffer size to indicate the maximum batch
Y
yangyaming 已提交
183
                                 cached.
Y
Yibing Liu 已提交
184
        shuffle_block_num (int): Block number indicating the minimum unit to do
185 186
                                 shuffle.
        random_seed (int): Random seed.
Y
Yibing Liu 已提交
187 188
        verbose (int): If set to 0, complaints including exceptions and signal
                       traceback from sub-process will be suppressed. If set
Y
yangyaming 已提交
189
                       to 1, all complaints will be printed.
Z
zhxfl 已提交
190 191
    """

Z
zhxfl 已提交
192 193 194 195 196 197 198 199
    def __init__(self,
                 feature_file_list,
                 label_file_list,
                 drop_frame_len=512,
                 process_num=10,
                 sample_buffer_size=1024,
                 sample_info_buffer_size=1024,
                 batch_buffer_size=1024,
200
                 shuffle_block_num=10,
201 202
                 random_seed=0,
                 verbose=0):
203 204 205 206 207 208 209 210 211 212 213 214
        self._feature_file_list = feature_file_list
        self._label_file_list = label_file_list
        self._drop_frame_len = drop_frame_len
        self._shuffle_block_num = shuffle_block_num
        self._block_info_list = None
        self._rng = random.Random(random_seed)
        self._bucket_list = None
        self.generate_bucket_list(True)
        self._order_id = 0
        self._manager = Manager()
        self._sample_buffer_size = sample_buffer_size
        self._sample_info_buffer_size = sample_info_buffer_size
Y
yangyaming 已提交
215
        self._batch_buffer_size = batch_buffer_size
216
        self._process_num = process_num
217
        self._verbose = verbose
218
        self._force_exit = ForceExitWrapper(self._manager.Value('b', False))
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

    def generate_bucket_list(self, is_shuffle):
        if self._block_info_list is None:
            block_feature_info_lines = open(self._feature_file_list).readlines()
            block_label_info_lines = open(self._label_file_list).readlines()
            assert len(block_feature_info_lines) == len(block_label_info_lines)
            self._block_info_list = []
            for i in xrange(0, len(block_feature_info_lines), 2):
                block_info = (block_feature_info_lines[i],
                              block_feature_info_lines[i + 1],
                              block_label_info_lines[i],
                              block_label_info_lines[i + 1])
                self._block_info_list.append(
                    map(lambda line: line.strip(), block_info))

        if is_shuffle:
            self._rng.shuffle(self._block_info_list)

        self._bucket_list = []
        for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
            bucket_block_info = self._block_info_list[i:i +
                                                      self._shuffle_block_num]
            self._bucket_list.append(
                SampleInfoBucket(
                    map(lambda info: info[0], bucket_block_info),
                    map(lambda info: info[1], bucket_block_info),
                    map(lambda info: info[2], bucket_block_info),
                    map(lambda info: info[3], bucket_block_info)))

    # @TODO make this configurable
    def set_transformers(self, transformers):
        self._transformers = transformers

    def _sample_generator(self):
        sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
        sample_queue = self._manager.Queue(self._sample_buffer_size)
        self._order_id = 0

257
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
258
        def ordered_feeding_task(sample_info_queue):
259
            for sample_info_bucket in self._bucket_list:
260 261 262 263 264 265 266 267 268 269
                try:
                    sample_info_list = \
                            sample_info_bucket.generate_sample_info_list()
                except Exception as e:
                    raise CriticalException(e)
                else:
                    self._rng.shuffle(sample_info_list)  # do shuffle here
                    for sample_info in sample_info_list:
                        sample_info_queue.put((sample_info, self._order_id))
                        self._order_id += 1
270 271 272 273 274

            for i in xrange(self._process_num):
                sample_info_queue.put(EpochEndSignal())

        feeding_thread = Thread(
Y
yangyaming 已提交
275
            target=ordered_feeding_task, args=(sample_info_queue, ))
276 277 278
        feeding_thread.daemon = True
        feeding_thread.start()

279
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
280
        def ordered_processing_task(sample_info_queue, sample_queue, out_order):
Y
yangyaming 已提交
281
            if self._verbose == 0:
282 283
                signal.signal(signal.SIGTERM, suppress_signal)
                signal.signal(signal.SIGINT, suppress_signal)
Y
yangyaming 已提交
284

285
            def read_bytes(fpath, start, size):
286 287 288 289 290 291 292 293
                try:
                    f = open(fpath, 'r')
                    f.seek(start, 0)
                    binary_bytes = f.read(size)
                    f.close()
                    return binary_bytes
                except Exception as e:
                    raise CriticalException(e)
294 295 296 297 298 299 300 301 302 303

            ins = sample_info_queue.get()

            while not isinstance(ins, EpochEndSignal):
                sample_info, order_id = ins

                feature_bytes = read_bytes(sample_info.feature_bin_path,
                                           sample_info.feature_start,
                                           sample_info.feature_size)

Z
zhxfl 已提交
304 305 306 307 308 309
                assert sample_info.feature_frame_num * sample_info.feature_dim * 4 \
                        == len(feature_bytes), \
                        (sample_info.feature_bin_path,
                         sample_info.feature_frame_num,
                         sample_info.feature_dim,
                         len(feature_bytes))
Z
zhxfl 已提交
310

311 312 313 314
                label_bytes = read_bytes(sample_info.label_bin_path,
                                         sample_info.label_start,
                                         sample_info.label_size)

Z
zhxfl 已提交
315 316 317 318
                assert sample_info.label_frame_num * 4 == len(label_bytes), (
                    sample_info.label_bin_path, sample_info.label_array,
                    len(label_bytes))

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
                label_array = struct.unpack('I' * sample_info.label_frame_num,
                                            label_bytes)
                label_data = np.array(
                    label_array, dtype='int64').reshape(
                        (sample_info.label_frame_num, 1))

                feature_frame_num = sample_info.feature_frame_num
                feature_dim = sample_info.feature_dim
                assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
                feature_array = struct.unpack('f' * feature_frame_num *
                                              feature_dim, feature_bytes)
                feature_data = np.array(
                    feature_array, dtype='float32').reshape((
                        sample_info.feature_frame_num, sample_info.feature_dim))

                sample_data = (feature_data, label_data)
                for transformer in self._transformers:
                    # @TODO(pkuyym) to make transfomer only accept feature_data
                    sample_data = transformer.perform_trans(sample_data)

                while order_id != out_order[0]:
                    time.sleep(0.001)

                # drop long sentence
Z
zhxfl 已提交
343 344
                if self._drop_frame_len == -1 or \
                        self._drop_frame_len >= sample_data[0].shape[0]:
345 346 347 348 349 350 351 352 353 354 355
                    sample_queue.put(sample_data)

                out_order[0] += 1
                ins = sample_info_queue.get()

            sample_queue.put(EpochEndSignal())

        out_order = self._manager.list([0])
        args = (sample_info_queue, sample_queue, out_order)
        workers = [
            Process(
Y
yangyaming 已提交
356
                target=ordered_processing_task, args=args)
357 358 359 360 361 362 363 364 365
            for _ in xrange(self._process_num)
        ]

        for w in workers:
            w.daemon = True
            w.start()

        finished_process_num = 0

366 367 368 369 370 371 372 373 374 375 376 377
        while self._force_exit == False:
            try:
                sample = sample_queue.get_nowait()
            except Queue.Empty:
                time.sleep(0.001)
            else:
                if isinstance(sample, EpochEndSignal):
                    finished_process_num += 1
                    if finished_process_num >= self._process_num:
                        break
                    else:
                        continue
378

379
                yield sample
380 381

    def batch_iterator(self, batch_size, minimum_batch_size):
Y
yangyaming 已提交
382
        def batch_to_ndarray(batch_samples, lod):
Z
zhxfl 已提交
383 384 385
            assert len(batch_samples)
            frame_dim = batch_samples[0][0].shape[1]
            batch_feature = np.zeros((lod[-1], frame_dim), dtype="float32")
Y
yangyaming 已提交
386 387 388 389 390 391 392 393 394
            batch_label = np.zeros((lod[-1], 1), dtype="int64")
            start = 0
            for sample in batch_samples:
                frame_num = sample[0].shape[0]
                batch_feature[start:start + frame_num, :] = sample[0]
                batch_label[start:start + frame_num, :] = sample[1]
                start += frame_num
            return (batch_feature, batch_label)

395
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
396 397 398 399 400 401 402
        def batch_assembling_task(sample_generator, batch_queue):
            batch_samples = []
            lod = [0]
            for sample in sample_generator():
                batch_samples.append(sample)
                lod.append(lod[-1] + sample[0].shape[0])
                if len(batch_samples) == batch_size:
Y
yangyaming 已提交
403 404
                    (batch_feature, batch_label) = batch_to_ndarray(
                        batch_samples, lod)
Y
yangyaming 已提交
405 406 407 408 409
                    batch_queue.put((batch_feature, batch_label, lod))
                    batch_samples = []
                    lod = [0]

            if len(batch_samples) >= minimum_batch_size:
Y
yangyaming 已提交
410 411
                (batch_feature, batch_label) = batch_to_ndarray(batch_samples,
                                                                lod)
Y
yangyaming 已提交
412 413 414 415 416 417 418 419 420 421 422 423
                batch_queue.put((batch_feature, batch_label, lod))

            batch_queue.put(EpochEndSignal())

        batch_queue = Queue.Queue(self._batch_buffer_size)

        assembling_thread = Thread(
            target=batch_assembling_task,
            args=(self._sample_generator, batch_queue))
        assembling_thread.daemon = True
        assembling_thread.start()

424
        while self._force_exit == False:
425 426 427 428 429 430 431 432
            try:
                batch_data = batch_queue.get_nowait()
            except Queue.Empty:
                time.sleep(0.001)
            else:
                if isinstance(batch_data, EpochEndSignal):
                    break
                yield batch_data