infer.py 4.0 KB
Newer Older
1
"""Infer for ICNet model."""
2
from __future__ import print_function
3 4 5 6 7 8 9 10
import cityscape
import argparse
import functools
import sys
import os
import cv2

import paddle.fluid as fluid
W
whs 已提交
11
import paddle
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
from icnet import icnet
from utils import add_arguments, print_arguments, get_feeder_data
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.initializer import init_on_cpu
import numpy as np

IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model_path',        str,   None,         "Model path.")
add_arg('images_list',       str,   None,         "List file with images to be infered.")
add_arg('images_path',       str,   None,         "The images path.")
add_arg('out_path',          str,   "./output",         "Output path.")
add_arg('use_gpu',           bool,  True,       "Whether use GPU to test.")
# yapf: enable

data_shape = [3, 1024, 2048]
num_classes = 19

label_colours = [
    [128, 64, 128],
    [244, 35, 231],
    [69, 69, 69]
    # 0 = road, 1 = sidewalk, 2 = building
    ,
    [102, 102, 156],
    [190, 153, 153],
    [153, 153, 153]
    # 3 = wall, 4 = fence, 5 = pole
    ,
    [250, 170, 29],
    [219, 219, 0],
    [106, 142, 35]
    # 6 = traffic light, 7 = traffic sign, 8 = vegetation
    ,
    [152, 250, 152],
    [69, 129, 180],
    [219, 19, 60]
    # 9 = terrain, 10 = sky, 11 = person
    ,
    [255, 0, 0],
    [0, 0, 142],
    [0, 0, 69]
    # 12 = rider, 13 = car, 14 = truck
    ,
    [0, 60, 100],
    [0, 79, 100],
    [0, 0, 230]
    # 15 = bus, 16 = train, 17 = motocycle
    ,
    [119, 10, 32]
]

# 18 = bicycle


def color(input):
    """
    Convert infered result to color image.
    """
    result = []
    for i in input.flatten():
        result.append(
            [label_colours[i][2], label_colours[i][1], label_colours[i][0]])
    result = np.array(result).reshape([input.shape[0], input.shape[1], 3])
    return result


def infer(args):
    data_shape = cityscape.test_data_shape()
    num_classes = cityscape.num_classes()
    # define network
    images = fluid.layers.data(name='image', shape=data_shape, dtype='float32')
    _, _, sub124_out = icnet(images, num_classes,
                             np.array(data_shape[1:]).astype("float32"))
    predict = fluid.layers.resize_bilinear(
        sub124_out, out_shape=data_shape[1:3])
    predict = fluid.layers.transpose(predict, perm=[0, 2, 3, 1])
    predict = fluid.layers.reshape(predict, shape=[-1, num_classes])
    _, predict = fluid.layers.topk(predict, k=1)
    predict = fluid.layers.reshape(
        predict,
        shape=[data_shape[1], data_shape[2], -1])  # batch_size should be 1
    inference_program = fluid.default_main_program().clone(for_test=True)
    # prepare environment
    place = fluid.CPUPlace()
    if args.use_gpu:
        place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    assert os.path.exists(args.model_path)
    fluid.io.load_params(exe, args.model_path)
105
    print("loaded model from: %s" % args.model_path)
106 107 108 109 110 111 112 113
    sys.stdout.flush()

    if not os.path.isdir(args.out_path):
        os.makedirs(args.out_path)

    for line in open(args.images_list):
        image_file = args.images_path + "/" + line.strip()
        filename = os.path.basename(image_file)
W
whs 已提交
114
        image = paddle.dataset.image.load_image(
115 116
            image_file, is_color=True).astype("float32")
        image -= IMG_MEAN
W
whs 已提交
117
        img = paddle.dataset.image.to_chw(image)[np.newaxis, :]
118 119 120 121 122 123 124
        image_t = fluid.core.LoDTensor()
        image_t.set(img, place)
        result = exe.run(inference_program,
                         feed={"image": image_t},
                         fetch_list=[predict])
        cv2.imwrite(args.out_path + "/" + filename + "_result.png",
                    color(result[0]))
W
whs 已提交
125
    print("Saved images into: %s" % args.out_path)
126 127 128 129 130 131 132 133 134 135


def main():
    args = parser.parse_args()
    print_arguments(args)
    infer(args)


if __name__ == "__main__":
    main()