STGAN.py 19.4 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
lvmengsi 已提交
15 16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.STGAN_network import STGAN_model
from util import utility
20
from util import timer
L
lvmengsi 已提交
21
import paddle.fluid as fluid
H
hysunflower 已提交
22
from paddle.fluid import profiler
L
lvmengsi 已提交
23 24 25 26
import sys
import time
import copy
import numpy as np
L
Lv Mengsi 已提交
27
import ast
L
lvmengsi 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


class GTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = STGAN_model()
            self.fake_img, self.rec_img = model.network_G(
                image_real, label_org_, label_trg_, cfg, name="generator")
            self.infer_program = self.program.clone(for_test=True)
            self.g_loss_rec = fluid.layers.mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="discriminator")
            #wgan
            if cfg.gan_mode == "wgan":
                self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
            #lsgan
            elif cfg.gan_mode == "lsgan":
C
ceci3 已提交
50 51 52
                fake_shape = fluid.layers.shape(self.pred_fake)
                ones = fluid.layers.fill_constant(
                    shape=fake_shape, value=1.0, dtype='float32')
L
lvmengsi 已提交
53 54 55 56
                self.g_loss_fake = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_fake, y=ones)))
L
lvmengsi 已提交
57 58 59
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

            self.g_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_fake,
                                                               label_trg))
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + cfg.lambda_cls * self.g_loss_cls
            lr = cfg.g_lr
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "generator"):
                    vars.append(var.name)
            self.param = vars
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch], values=[lr, lr * 0.1]),
                beta1=0.5,
                beta2=0.999,
                name="net_G")

            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        lr = cfg.d_lr
        with fluid.program_guard(self.program):
            model = STGAN_model()
            self.fake_img, _ = model.network_G(
L
lvmengsi 已提交
90
                image_real, label_org_, label_trg_, cfg, name="generator")
L
lvmengsi 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="discriminator")
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="discriminator")
            self.d_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_real,
                                                               label_org))
            #wgan
            if cfg.gan_mode == "wgan":
                self.d_loss_fake = fluid.layers.reduce_mean(self.pred_fake)
                self.d_loss_real = -1 * fluid.layers.reduce_mean(self.pred_real)
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
L
lvmengsi 已提交
104
                    image_real,
L
lvmengsi 已提交
105 106 107 108 109 110
                    self.fake_img,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
            #lsgan
            elif cfg.gan_mode == "lsgan":
C
ceci3 已提交
111 112 113
                real_shape = fluid.layers.shape(self.pred_real)
                ones = fluid.layers.fill_constant(
                    shape=real_shape, value=1.0, dtype='float32')
L
lvmengsi 已提交
114 115 116 117 118 119
                self.d_loss_real = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_real, y=ones)))
                self.d_loss_fake = fluid.layers.mean(
                    fluid.layers.square(x=self.pred_fake))
L
lvmengsi 已提交
120 121 122 123 124 125 126
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
                    image_real,
                    None,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
L
lvmengsi 已提交
127 128 129
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (
                        var.name.startswith("discriminator")):
                    vars.append(var.name)
            self.param = vars

            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch],
                    values=[lr, lr * 0.1], ),
                beta1=0.5,
                beta2=0.999,
                name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)

    def gradient_penalty(self, f, real, fake=None, cfg=None, name=None):
        def _interpolate(a, b=None):
C
ceci3 已提交
150
            a_shape = fluid.layers.shape(a)
L
lvmengsi 已提交
151
            if b is None:
u010070587's avatar
u010070587 已提交
152
                if cfg.enable_ce:
C
ceci3 已提交
153 154
                    beta = fluid.layers.uniform_random(
                        shape=a_shape, min=0.0, max=1.0, seed=1)
u010070587's avatar
u010070587 已提交
155
                else:
C
ceci3 已提交
156 157 158
                    beta = fluid.layers.uniform_random(
                        shape=a_shape, min=0.0, max=1.0)

L
lvmengsi 已提交
159
                mean = fluid.layers.reduce_mean(
C
ceci3 已提交
160
                    a, dim=list(range(len(a.shape))))
L
lvmengsi 已提交
161 162 163
                input_sub_mean = fluid.layers.elementwise_sub(a, mean, axis=0)
                var = fluid.layers.reduce_mean(
                    fluid.layers.square(input_sub_mean),
C
ceci3 已提交
164
                    dim=list(range(len(a.shape))))
L
lvmengsi 已提交
165
                b = beta * fluid.layers.sqrt(var) * 0.5 + a
u010070587's avatar
u010070587 已提交
166
            if cfg.enable_ce:
C
ceci3 已提交
167 168 169 170 171
                alpha = fluid.layers.uniform_random(
                    shape=a_shape[0], min=0.0, max=1.0, seed=1)
            else:
                alpha = fluid.layers.uniform_random(
                    shape=a_shape[0], min=0.0, max=1.0)
u010070587's avatar
u010070587 已提交
172

C
ceci3 已提交
173
            inner = fluid.layers.elementwise_mul((b - a), alpha, axis=0) + a
L
lvmengsi 已提交
174 175 176 177 178 179 180 181 182 183 184 185
            return inner

        x = _interpolate(real, fake)

        pred, _ = f(x, cfg=cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith(
                    "discriminator"):
                vars.append(var.name)
L
lvmengsi 已提交
186
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
L
lvmengsi 已提交
187 188 189
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
190
        epsilon = 1e-16
L
lvmengsi 已提交
191 192
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
193
                fluid.layers.square(grad), dim=1) + epsilon)
L
lvmengsi 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class STGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--g_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of generator")
        parser.add_argument(
            '--d_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of discriminator")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=13,
            help="the number of attributes we selected")
        parser.add_argument(
            '--d_fc_dim',
            type=int,
            default=1024,
            help="the base fc dim in discriminator")
        parser.add_argument(
C
ceci3 已提交
221 222 223 224
            '--use_gru',
            type=ast.literal_eval,
            default=True,
            help="whether to use GRU")
L
lvmengsi 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=10.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=100.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--thres_int',
            type=float,
            default=0.5,
            help="thresh change of attributes")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_samples', type=int, default=16, help="batch size when testing")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_layers',
            type=int,
            default=5,
            help="default layers in generotor")
        parser.add_argument(
            '--gru_n_layers',
            type=int,
            default=4,
            help="default layers of GRU in generotor")
L
lvmengsi 已提交
262 263 264 265 266 267
        parser.add_argument(
            '--dis_norm',
            type=str,
            default=None,
            help="the normalization in discriminator, choose in [None, instance_norm]"
        )
u010070587's avatar
u010070587 已提交
268 269 270 271
        parser.add_argument(
            '--enable_ce',
            action='store_true',
            help="if set, run the tasks with continuous evaluation logs")
L
lvmengsi 已提交
272 273 274 275 276 277
        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
L
lvmengsi 已提交
278 279
                 batch_num=1,
                 id2name=None):
L
lvmengsi 已提交
280 281 282 283 284 285
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num

    def build_model(self):
L
lvmengsi 已提交
286
        data_shape = [None, 3, self.cfg.image_size, self.cfg.image_size]
L
lvmengsi 已提交
287

L
lvmengsi 已提交
288
        image_real = fluid.data(
L
lvmengsi 已提交
289
            name='image_real', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
290 291 292 293 294 295 296 297
        label_org = fluid.data(
            name='label_org', shape=[None, self.cfg.c_dim], dtype='float32')
        label_trg = fluid.data(
            name='label_trg', shape=[None, self.cfg.c_dim], dtype='float32')
        label_org_ = fluid.data(
            name='label_org_', shape=[None, self.cfg.c_dim], dtype='float32')
        label_trg_ = fluid.data(
            name='label_trg_', shape=[None, self.cfg.c_dim], dtype='float32')
u010070587's avatar
u010070587 已提交
298 299 300
        # used for continuous evaluation        
        if self.cfg.enable_ce:
            fluid.default_startup_program().random_seed = 90
L
lvmengsi 已提交
301 302 303 304 305

        test_gen_trainer = GTrainer(image_real, label_org, label_org_,
                                    label_trg, label_trg_, self.cfg,
                                    self.batch_num)

C
ceci3 已提交
306
        loader = fluid.io.DataLoader.from_generator(
L
lvmengsi 已提交
307 308 309 310 311 312 313
            feed_list=[image_real, label_org, label_trg],
            capacity=64,
            iterable=True,
            use_double_buffer=True)
        label_org_ = (label_org * 2.0 - 1.0) * self.cfg.thres_int
        label_trg_ = (label_trg * 2.0 - 1.0) * self.cfg.thres_int

L
lvmengsi 已提交
314 315 316 317 318 319 320
        gen_trainer = GTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
C
ceci3 已提交
321
        loader.set_batch_generator(
L
lvmengsi 已提交
322 323 324
            self.train_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
325

L
lvmengsi 已提交
326 327 328 329
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
C
ceci3 已提交
330 331
            utility.init_checkpoints(self.cfg, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, dis_trainer, "net_D")
L
lvmengsi 已提交
332 333 334 335 336 337 338 339 340 341 342 343

        ### memory optim
        build_strategy = fluid.BuildStrategy()

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)
u010070587's avatar
u010070587 已提交
344 345 346 347
        # used for continuous evaluation        
        if self.cfg.enable_ce:
            gen_trainer_program.random_seed = 90
            dis_trainer_program.random_seed = 90
C
ceci3 已提交
348

H
hysunflower 已提交
349
        total_train_batch = 0  # used for benchmark
350 351
        reader_cost_averager = timer.TimeAverager()
        batch_cost_averager = timer.TimeAverager()
L
lvmengsi 已提交
352 353
        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
354
            batch_start = time.time()
C
ceci3 已提交
355
            for data in loader():
C
ceci3 已提交
356
                if self.cfg.max_iter and total_train_batch == self.cfg.max_iter:  # used for benchmark
H
hysunflower 已提交
357
                    return
358 359
                reader_cost_averager.record(time.time() - batch_start)

L
lvmengsi 已提交
360
                # optimize the discriminator network
L
lvmengsi 已提交
361 362 363 364 365 366 367 368 369 370 371
                fetches = [
                    dis_trainer.d_loss.name,
                    dis_trainer.d_loss_real.name,
                    dis_trainer.d_loss_fake.name,
                    dis_trainer.d_loss_cls.name,
                    dis_trainer.d_loss_gp.name,
                ]
                d_loss, d_loss_real, d_loss_fake, d_loss_cls, d_loss_gp, = exe.run(
                    dis_trainer_program, fetch_list=fetches, feed=data)
                if (batch_id + 1) % self.cfg.num_discriminator_time == 0:
                    # optimize the generator network
L
lvmengsi 已提交
372 373 374 375 376
                    d_fetches = [
                        gen_trainer.g_loss_fake.name,
                        gen_trainer.g_loss_rec.name, gen_trainer.g_loss_cls.name
                    ]
                    g_loss_fake, g_loss_rec, g_loss_cls = exe.run(
L
lvmengsi 已提交
377
                        gen_trainer_program, fetch_list=d_fetches, feed=data)
L
lvmengsi 已提交
378
                    print("epoch{}: batch{}: \n\
379
                         g_loss_fake: {:.5f}; g_loss_rec: {:.5f}; g_loss_cls: {:.5f}"
L
lvmengsi 已提交
380 381
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))
382

383 384
                batch_cost_averager.record(
                    time.time() - batch_start, num_samples=self.cfg.batch_size)
L
lvmengsi 已提交
385 386
                if (batch_id + 1) % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}:  \n\
387 388
                         d_loss: {:.5f}; d_loss_real: {:.5f}; d_loss_fake: {:.5f}; d_loss_cls: {:.5f}; d_loss_gp: {:.5f} \n\
                         batch_cost: {:.5f} sec, reader_cost: {:.5f} sec, ips: {:.5f} images/sec"
389 390
                          .format(epoch_id, batch_id, d_loss[0], d_loss_real[0],
                                  d_loss_fake[0], d_loss_cls[0], d_loss_gp[0],
391
                                  batch_cost_averager.get_average(),
392
                                  reader_cost_averager.get_average(),
393
                                  batch_cost_averager.get_ips_average()))
394 395 396
                    reader_cost_averager.reset()
                    batch_cost_averager.reset()

L
lvmengsi 已提交
397 398
                sys.stdout.flush()
                batch_id += 1
399 400 401
                total_train_batch += 1  # used for benchmark
                batch_start = time.time()

u010070587's avatar
u010070587 已提交
402
                if self.cfg.enable_ce and batch_id == 100:
C
ceci3 已提交
403
                    break
u010070587's avatar
u010070587 已提交
404

H
hysunflower 已提交
405 406 407 408 409
                # profiler tools
                if self.cfg.profile and epoch_id == 0 and batch_id == self.cfg.print_freq:
                    profiler.reset_profiler()
                elif self.cfg.profile and epoch_id == 0 and batch_id == self.cfg.print_freq + 5:
                    return
L
lvmengsi 已提交
410 411

            if self.cfg.run_test:
L
lvmengsi 已提交
412
                image_name = fluid.data(
L
lvmengsi 已提交
413
                    name='image_name',
L
lvmengsi 已提交
414
                    shape=[None, self.cfg.n_samples],
L
lvmengsi 已提交
415
                    dtype='int32')
C
ceci3 已提交
416
                test_loader = fluid.io.DataLoader.from_generator(
L
lvmengsi 已提交
417 418 419 420
                    feed_list=[image_real, label_org, label_trg, image_name],
                    capacity=32,
                    iterable=True,
                    use_double_buffer=True)
C
ceci3 已提交
421
                test_loader.set_batch_generator(
L
lvmengsi 已提交
422 423 424
                    self.test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
425
                test_program = test_gen_trainer.infer_program
L
lvmengsi 已提交
426
                utility.save_test_image(epoch_id, self.cfg, exe, place,
L
lvmengsi 已提交
427
                                        test_program, test_gen_trainer,
C
ceci3 已提交
428
                                        test_loader)
L
lvmengsi 已提交
429 430

            if self.cfg.save_checkpoints:
C
ceci3 已提交
431 432
                utility.checkpoints(epoch_id, self.cfg, gen_trainer, "net_G")
                utility.checkpoints(epoch_id, self.cfg, dis_trainer, "net_D")
u010070587's avatar
u010070587 已提交
433 434
            # used for continuous evaluation
            if self.cfg.enable_ce:
C
ceci3 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                device_num = fluid.core.get_cuda_device_count(
                ) if self.cfg.use_gpu else 1
                print("kpis\tstgan_g_loss_fake_card{}\t{}".format(
                    device_num, g_loss_fake[0]))
                print("kpis\tstgan_g_loss_rec_card{}\t{}".format(device_num,
                                                                 g_loss_rec[0]))
                print("kpis\tstgan_g_loss_cls_card{}\t{}".format(device_num,
                                                                 g_loss_cls[0]))
                print("kpis\tstgan_d_loss_card{}\t{}".format(device_num, d_loss[
                    0]))
                print("kpis\tstgan_d_loss_real_card{}\t{}".format(
                    device_num, d_loss_real[0]))
                print("kpis\tstgan_d_loss_fake_card{}\t{}".format(
                    device_num, d_loss_fake[0]))
                print("kpis\tstgan_d_loss_cls_card{}\t{}".format(device_num,
                                                                 d_loss_cls[0]))
                print("kpis\tstgan_d_loss_gp_card{}\t{}".format(device_num,
                                                                d_loss_gp[0]))
                print("kpis\tstgan_Batch_time_cost_card{}\t{}".format(
                    device_num, batch_time))