未验证 提交 d390d968 编写于 作者: Q qingqing01 提交者: GitHub

Merge pull request #64 from qingqing01/ut_and_doc

Add unit testing and doc.
......@@ -185,6 +185,9 @@ class ProgBarLogger(Callback):
self.verbose = verbose
self.log_freq = log_freq
def _is_print(self):
return self.verbose and ParallelEnv().local_rank == 0
def on_train_begin(self, logs=None):
self.epochs = self.params['epochs']
assert self.epochs
......@@ -195,7 +198,7 @@ class ProgBarLogger(Callback):
self.steps = self.params['steps']
self.epoch = epoch
self.train_step = 0
if self.verbose and self.epochs and ParallelEnv().local_rank == 0:
if self.epochs and self._is_print():
print('Epoch %d/%d' % (epoch + 1, self.epochs))
self.train_progbar = ProgressBar(num=self.steps, verbose=self.verbose)
......@@ -213,15 +216,13 @@ class ProgBarLogger(Callback):
logs = logs or {}
self.train_step += 1
if self.train_step % self.log_freq == 0 and self.verbose and ParallelEnv(
).local_rank == 0:
if self._is_print() and self.train_step % self.log_freq == 0:
if self.steps is None or self.train_step < self.steps:
self._updates(logs, 'train')
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
if self.train_step % self.log_freq != 0 and self.verbose and ParallelEnv(
).local_rank == 0:
if self._is_print() and (self.steps is not None):
self._updates(logs, 'train')
def on_eval_begin(self, logs=None):
......@@ -231,7 +232,7 @@ class ProgBarLogger(Callback):
self.evaled_samples = 0
self.eval_progbar = ProgressBar(
num=self.eval_steps, verbose=self.verbose)
if ParallelEnv().local_rank == 0:
if self._is_print():
print('Eval begin...')
def on_eval_batch_end(self, step, logs=None):
......@@ -240,16 +241,14 @@ class ProgBarLogger(Callback):
samples = logs.get('batch_size', 1)
self.evaled_samples += samples
if self.eval_step % self.log_freq == 0 and self.verbose and ParallelEnv(
).local_rank == 0:
if self._is_print() and self.eval_step % self.log_freq == 0:
if self.eval_steps is None or self.eval_step < self.eval_steps:
self._updates(logs, 'eval')
def on_eval_end(self, logs=None):
logs = logs or {}
if self.verbose and ParallelEnv().local_rank == 0:
if self.eval_step % self.log_freq != 0:
self._updates(logs, 'eval')
if self._is_print() and (self.steps is not None):
self._updates(logs, 'eval')
print('Eval samples: %d' % (self.evaled_samples))
......
......@@ -45,6 +45,8 @@ class MNIST(Dataset):
:attr:`download` is True. Default None
label_path(str): path to label file, can be set None if
:attr:`download` is True. Default None
chw_format(bool): If set True, the output shape is [1, 28, 28],
otherwise, output shape is [1, 784]. Default True.
mode(str): 'train' or 'test' mode. Default 'train'.
download(bool): whether auto download mnist dataset if
:attr:`image_path`/:attr:`label_path` unset. Default
......@@ -70,13 +72,14 @@ class MNIST(Dataset):
def __init__(self,
image_path=None,
label_path=None,
chw_format=True,
mode='train',
transform=None,
download=True):
assert mode.lower() in ['train', 'test'], \
"mode should be 'train' or 'test', but got {}".format(mode)
self.mode = mode.lower()
self.chw_format = chw_format
self.image_path = image_path
if self.image_path is None:
assert download, "image_path not set and auto download disabled"
......@@ -144,10 +147,13 @@ class MNIST(Dataset):
for i in range(buffer_size):
self.images.append(images[i, :])
self.labels.append(np.array([labels[i]]).astype('int64'))
self.labels.append(
np.array([labels[i]]).astype('int64'))
def __getitem__(self, idx):
image, label = self.images[idx], self.labels[idx]
if self.chw_format:
image = np.reshape(image, [1, 28, 28])
if self.transform is not None:
image = self.transform(image)
return image, label
......
......@@ -66,7 +66,7 @@ class CrossEntropy(Loss):
"""
def __init__(self, average=True):
super(CrossEntropy, self).__init__()
super(CrossEntropy, self).__init__(average)
def forward(self, outputs, labels):
return [
......@@ -88,7 +88,7 @@ class SoftmaxWithCrossEntropy(Loss):
"""
def __init__(self, average=True):
super(SoftmaxWithCrossEntropy, self).__init__()
super(SoftmaxWithCrossEntropy, self).__init__(average)
def forward(self, outputs, labels):
return [
......
此差异已折叠。
......@@ -18,27 +18,25 @@ from __future__ import print_function
import unittest
import os
import cv2
import numpy as np
import tempfile
import shutil
import tempfile
import paddle
from paddle import fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
from paddle.fluid.dygraph.container import Sequential
from paddle.io import BatchSampler, DataLoader
from paddle.io import DataLoader
from paddle.fluid.dygraph.base import to_variable
from hapi.model import Model, Input, set_device
from hapi.loss import Loss
from hapi.loss import CrossEntropy
from hapi.metrics import Accuracy
from hapi.datasets import MNIST
from hapi.vision.models import LeNet
from hapi.download import get_weights_path_from_url
class LeNetDygraph(fluid.dygraph.Layer):
def __init__(self, num_classes=10, classifier_activation='softmax'):
super(LeNetDygraph, self).__init__()
self.num_classes = num_classes
......@@ -67,12 +65,16 @@ class LeNetDygraph(fluid.dygraph.Layer):
class MnistDataset(MNIST):
def __init__(self, mode, return_label=True):
def __init__(self, mode, return_label=True, sample_num=None):
super(MnistDataset, self).__init__(mode=mode)
self.return_label = return_label
if sample_num:
self.images = self.images[:sample_num]
self.labels = self.labels[:sample_num]
def __getitem__(self, idx):
img = np.reshape(self.images[idx], [1, 28, 28])
img, label = self.images[idx], self.labels[idx]
img = np.reshape(img, [1, 28, 28])
if self.return_label:
return img, np.array(self.labels[idx]).astype('int64')
return img,
......@@ -81,15 +83,14 @@ class MnistDataset(MNIST):
return len(self.images)
def get_predict_accuracy(pred, gt):
def compute_acc(pred, label):
pred = np.argmax(pred, -1)
gt = np.array(gt)
correct = pred[:, np.newaxis] == gt
label = np.array(label)
correct = pred[:, np.newaxis] == label
return np.sum(correct) / correct.shape[0]
def low_level_lenet_dygraph_train(model, dataloader):
def dynamic_train(model, dataloader):
optim = fluid.optimizer.Adam(
learning_rate=0.001, parameter_list=model.parameters())
model.train()
......@@ -102,7 +103,7 @@ def low_level_lenet_dygraph_train(model, dataloader):
model.clear_gradients()
def low_level_dynamic_evaluate(model, dataloader):
def dynamic_evaluate(model, dataloader):
with fluid.dygraph.no_grad():
model.eval()
cnt = 0
......@@ -115,56 +116,65 @@ def low_level_dynamic_evaluate(model, dataloader):
return cnt / len(dataloader.dataset)
class TestEvaluatePredict(unittest.TestCase):
def setUp(self):
self.device = set_device('gpu')
self.train_dataset = MnistDataset(mode='train')
self.val_dataset = MnistDataset(mode='test')
self.test_dataset = MnistDataset(mode='test', return_label=False)
fluid.enable_dygraph(self.device)
train_dataloader = fluid.io.DataLoader(
self.train_dataset, places=self.device, batch_size=64)
val_dataloader = fluid.io.DataLoader(
self.val_dataset, places=self.device, batch_size=64)
self.lenet_dygraph = LeNetDygraph()
low_level_lenet_dygraph_train(self.lenet_dygraph, train_dataloader)
self.acc1 = low_level_dynamic_evaluate(self.lenet_dygraph,
val_dataloader)
self.save_dir = tempfile.mkdtemp()
self.weight_path = os.path.join(self.save_dir, 'lenet')
fluid.dygraph.save_dygraph(self.lenet_dygraph.state_dict(), self.weight_path)
class TestModel(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.device = set_device('gpu')
fluid.enable_dygraph(cls.device)
fluid.disable_dygraph()
sp_num = 1280
cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
cls.test_dataset = MnistDataset(
mode='test', return_label=False, sample_num=sp_num)
def tearDown(self):
shutil.rmtree(self.save_dir)
cls.train_loader = fluid.io.DataLoader(
cls.train_dataset, places=cls.device, batch_size=64)
cls.val_loader = fluid.io.DataLoader(
cls.val_dataset, places=cls.device, batch_size=64)
cls.test_loader = fluid.io.DataLoader(
cls.test_dataset, places=cls.device, batch_size=64)
def evaluate(self, dynamic):
fluid.enable_dygraph(self.device) if dynamic else None
seed = 333
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
inputs = [Input([-1, 1, 28, 28], 'float32', name='image')]
labels = [Input([None, 1], 'int64', name='label')]
dy_lenet = LeNetDygraph()
cls.init_param = dy_lenet.state_dict()
dynamic_train(dy_lenet, cls.train_loader)
val_dataloader = fluid.io.DataLoader(
self.val_dataset,
places=self.device,
batch_size=64,
return_list=True)
cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)
model = LeNet()
cls.inputs = [Input([-1, 1, 28, 28], 'float32', name='image')]
cls.labels = [Input([None, 1], 'int64', name='label')]
model.load(self.weight_path)
cls.save_dir = tempfile.mkdtemp()
cls.weight_path = os.path.join(cls.save_dir, 'lenet')
fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)
model.prepare(metrics=Accuracy(), inputs=inputs, labels=labels)
fluid.disable_dygraph()
result = model.evaluate(val_dataloader)
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.save_dir)
np.testing.assert_allclose(result['acc'], self.acc1)
def test_fit_dygraph(self):
self.fit(True)
if fluid.in_dygraph_mode():
fluid.disable_dygraph()
def test_fit_static(self):
self.fit(False)
def test_evaluate_dygraph(self):
self.evaluate(True)
def test_evaluate_static(self):
self.evaluate(False)
def test_predict_dygraph(self):
self.predict(True)
def test_predict_static(self):
self.predict(False)
def predict(self, dynamic):
fluid.enable_dygraph(self.device) if dynamic else None
......@@ -186,26 +196,161 @@ class TestEvaluatePredict(unittest.TestCase):
output = model.predict(test_dataloader, stack_outputs=True)
np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
acc = get_predict_accuracy(output[0], self.val_dataset.labels)
np.testing.assert_allclose(acc, self.acc1)
if fluid.in_dygraph_mode():
fluid.disable_dygraph()
def fit(self, dynamic):
fluid.enable_dygraph(self.device) if dynamic else None
seed = 333
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
def test_evaluate_dygraph(self):
self.evaluate(True)
model = LeNet()
optim_new = fluid.optimizer.Adam(
learning_rate=0.001, parameter_list=model.parameters())
model.prepare(
optim_new,
loss_function=CrossEntropy(average=False),
metrics=Accuracy(),
inputs=self.inputs,
labels=self.labels)
model.fit(self.train_dataset, batch_size=64, shuffle=False)
result = model.evaluate(self.val_dataset, batch_size=64)
np.testing.assert_allclose(result['acc'], self.acc1)
fluid.disable_dygraph() if dynamic else None
def test_evaluate_static(self):
self.evaluate(False)
def evaluate(self, dynamic):
fluid.enable_dygraph(self.device) if dynamic else None
model = LeNet()
model.prepare(
metrics=Accuracy(), inputs=self.inputs, labels=self.labels)
model.load(self.weight_path)
result = model.evaluate(self.val_dataset, batch_size=64)
np.testing.assert_allclose(result['acc'], self.acc1)
fluid.disable_dygraph() if dynamic else None
def test_predict_dygraph(self):
self.predict(True)
def predict(self, dynamic):
fluid.enable_dygraph(self.device) if dynamic else None
model = LeNet()
model.prepare(inputs=self.inputs)
model.load(self.weight_path)
output = model.predict(
self.test_dataset, batch_size=64, stack_outputs=True)
np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
def test_predict_static(self):
self.predict(False)
acc = compute_acc(output[0], self.val_dataset.labels)
np.testing.assert_allclose(acc, self.acc1)
fluid.disable_dygraph() if dynamic else None
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self._fc = Linear(20, 10, act='softmax')
def forward(self, x):
y = self._fc(x)
return y
class TestModelFunction(unittest.TestCase):
def set_seed(self, seed=1024):
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
def test_train_batch(self, dynamic=True):
dim = 20
data = np.random.random(size=(4, dim)).astype(np.float32)
label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
def get_expect():
fluid.enable_dygraph(fluid.CPUPlace())
self.set_seed()
m = MyModel()
optim = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=m.parameters())
m.train()
output = m(to_variable(data))
l = to_variable(label)
loss = fluid.layers.cross_entropy(output, l)
avg_loss = fluid.layers.reduce_sum(loss)
avg_loss.backward()
optim.minimize(avg_loss)
m.clear_gradients()
fluid.disable_dygraph()
return avg_loss.numpy()
ref = get_expect()
for dynamic in [True, False]:
device = set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
self.set_seed()
model = MyModel()
optim2 = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=model.parameters())
inputs = [Input([None, dim], 'float32', name='x')]
labels = [Input([None, 1], 'int64', name='label')]
model.prepare(
optim2,
loss_function=CrossEntropy(average=False),
inputs=inputs,
labels=labels,
device=device)
loss, = model.train_batch([data], [label])
np.testing.assert_allclose(loss.flatten(), ref.flatten())
fluid.disable_dygraph() if dynamic else None
def test_test_batch(self, dynamic=True):
dim = 20
data = np.random.random(size=(4, dim)).astype(np.float32)
def get_expect():
fluid.enable_dygraph(fluid.CPUPlace())
self.set_seed()
m = MyModel()
m.eval()
output = m(to_variable(data))
fluid.disable_dygraph()
return output.numpy()
ref = get_expect()
for dynamic in [True, False]:
device = set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
self.set_seed()
model = MyModel()
inputs = [Input([None, dim], 'float32', name='x')]
model.prepare(inputs=inputs, device=device)
out, = model.test_batch([data])
np.testing.assert_allclose(out, ref)
fluid.disable_dygraph() if dynamic else None
def test_save_load(self):
path = tempfile.mkdtemp()
for dynamic in [True, False]:
device = set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
model = MyModel()
inputs = [Input([None, 20], 'float32', name='x')]
model.prepare(inputs=inputs)
model.save(path + '/test')
model.load(path + '/test')
shutil.rmtree(path)
fluid.disable_dygraph() if dynamic else None
def test_parameters(self):
for dynamic in [True, False]:
device = set_device('cpu')
fluid.enable_dygraph(device) if dynamic else None
model = MyModel()
inputs = [Input([None, 20], 'float32', name='x')]
model.prepare(inputs=inputs)
params = model.parameters()
self.assertTrue(params[0].shape[0] == 20)
self.assertTrue(params[0].shape[1] == 10)
fluid.disable_dygraph() if dynamic else None
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册