提交 b295ffbb 编写于 作者: Q qingqing01

Small update

上级 ed6abbe1
......@@ -46,7 +46,7 @@ class MNIST(Dataset):
label_path(str): path to label file, can be set None if
:attr:`download` is True. Default None
chw_format(bool): If set True, the output shape is [1, 28, 28],
otherwise, output shape is [1, 784].
otherwise, output shape is [1, 784]. Default True.
mode(str): 'train' or 'test' mode. Default 'train'.
download(bool): whether auto download mnist dataset if
:attr:`image_path`/:attr:`label_path` unset. Default
......
......@@ -993,8 +993,8 @@ class Model(fluid.dygraph.Layer):
Returns a list of parameters of the model.
Returns:
list of Parameter in static graph.
list of ParamBase in dynamic graph.
A list of Parameter in static graph.
A list of ParamBase in dynamic graph.
Examples:
......@@ -1034,15 +1034,15 @@ class Model(fluid.dygraph.Layer):
no loss.
metrics (Metric|list of Metric|None): If metrics is set, all
metrics will be calculated and output in train/eval mode.
inputs (Input|list|dict|None): inputs, entry points of network,
inputs (Input|list|dict|None): `inputs`, entry points of network,
could be a Input layer, or lits of Input layers,
or dict (name: Input), or None. For static graph,
inputs must be set. For dynamic graph, it could be None.
labels (Input|list|None): labels, entry points of network,
labels (Input|list|None): `labels`, entry points of network,
could be a Input layer or lits of Input layers, or None.
For static graph, if labels is required in loss_function,
labels must be set. Otherwise, it could be None.
device (str|fluid.CUDAPlace|fluid.CPUPlace|None): specify device
device (str|fluid.CUDAPlace|fluid.CPUPlace|None): Specify device
type, 'CPU', 'GPU', fluid.CUDAPlace or fluid.CPUPlace.
If None, automatically select device according to
installation package version.
......@@ -1141,27 +1141,33 @@ class Model(fluid.dygraph.Layer):
evaluation at the end of epoch. If None, will not do evaluation.
An instance of paddle.io.Dataset or paddle.io.Dataloader
is recomended. Default: None.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
parameter will be ignored. Default: 1.
epochs (int): Integer number. The number of epochs to train the model. Default: 1.
batch_size (int): Integer number. The batch size of train_data
and eval_data. When train_data and eval_data are both the
instance of Dataloader, this parameter will be ignored.
Default: 1.
epochs (int): Integer number. The number of epochs to train
the model. Default: 1.
eval_freq (int): The frequency, in number of epochs, an evalutation
is performed. Default: 1.
log_freq (int): The frequency, in number of steps, the training logs
are printed. Default: 10.
save_dir(str|None): The directory to save checkpoint during training.
If None, will not save checkpoint. Default: None.
save_freq (int): The frequency, in number of epochs, to save checkpoint. Default: 1.
verbose (int): The verbosity mode, should be 0, 1, or 2.
0 = silent, 1 = progress bar, 2 = one line per epoch. Default: 2.
drop_last (bool): whether drop the last incomplete batch of train_data
when dataset size is not divisible by the batch size. When train_data
is an instance of Dataloader, this parameter will be ignored. Default: False.
shuffle (bool): whther to shuffle train_data. When train_data is an instance
of Dataloader, this parameter will be ignored. Default: True.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this parameter will be ignored. Default: 0.
save_freq (int): The frequency, in number of epochs, to save
checkpoint. Default: 1.
verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1 = progress bar, 2 = one line per epoch. Default: 2.
drop_last (bool): Whether drop the last incomplete batch of
train_data when dataset size is not divisible by the batch size.
When train_data is an instance of Dataloader, this parameter
will be ignored. Default: False.
shuffle (bool): Whther to shuffle train_data. When train_data is
an instance of Dataloader, this parameter will be ignored.
Default: True.
num_workers (int): The number of subprocess to load data, 0 for no
subprocess used and loading data in main process.
When train_data and eval_data are both the instance of
Dataloader, this parameter will be ignored. Default: 0.
callbacks (Callback|None): A list of `Callback` instances to apply
during training. If None, `ProgBarLogger` and `ModelCheckpoint`
are automatically inserted. Default: None.
......@@ -1424,15 +1430,15 @@ class Model(fluid.dygraph.Layer):
Args:
test_data (Dataset|DataLoader): An iterable data loader is used for
predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
is recomended.
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
batch_size (int): Integer number. The batch size of train_data and eval_data.
When train_data and eval_data are both the instance of Dataloader, this
argument will be ignored. Default: 1.
num_workers (int): the number of subprocess to load data, 0 for no subprocess
num_workers (int): The number of subprocess to load data, 0 for no subprocess
used and loading data in main process. When train_data and eval_data are
both the instance of Dataloader, this argument will be ignored. Default: 0.
stack_output (bool): whether stack output field like a batch, as for an output
stack_output (bool): Whether stack output field like a batch, as for an output
filed of a sample is in shape [X, Y], test_data contains N samples, predict
output field will be in shape [N, X, Y] if stack_output is True, and will
be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册