Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
54b3b726
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
54b3b726
编写于
4月 28, 2020
作者:
W
wangxiao1021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add emotion_detection and update senta
上级
cea791c6
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
772 addition
and
36 deletion
+772
-36
examples/emotion_detection/config.yaml
examples/emotion_detection/config.yaml
+23
-0
examples/emotion_detection/download.py
examples/emotion_detection/download.py
+123
-0
examples/emotion_detection/download_data.sh
examples/emotion_detection/download_data.sh
+8
-0
examples/emotion_detection/models.py
examples/emotion_detection/models.py
+179
-0
examples/emotion_detection/run_classifier.py
examples/emotion_detection/run_classifier.py
+158
-0
examples/sentiment_classification/models.py
examples/sentiment_classification/models.py
+33
-7
examples/sentiment_classification/sentiment_classifier.py
examples/sentiment_classification/sentiment_classifier.py
+27
-28
hapi/text/emo_tect/__init__.py
hapi/text/emo_tect/__init__.py
+15
-0
hapi/text/emo_tect/data_processor.py
hapi/text/emo_tect/data_processor.py
+79
-0
hapi/text/emo_tect/data_reader.py
hapi/text/emo_tect/data_reader.py
+126
-0
hapi/text/senta/__init__.py
hapi/text/senta/__init__.py
+1
-1
hapi/text/senta/data_processor.py
hapi/text/senta/data_processor.py
+0
-0
未找到文件。
examples/emotion_detection/config.yaml
0 → 100644
浏览文件 @
54b3b726
model_type
:
"
bow_net"
num_labels
:
3
vocab_size
:
240465
vocab_path
:
"
./data/vocab.txt"
data_dir
:
"
./data"
inference_model_dir
:
"
./inference_model"
save_checkpoint_dir
:
"
"
init_checkpoint
:
"
"
checkpoints
:
"
./checkpoints/"
lr
:
0.02
epoch
:
10
batch_size
:
24
do_train
:
True
do_val
:
True
do_infer
:
False
do_save_inference_model
:
False
max_seq_len
:
20
skip_steps
:
10
save_freq
:
1
eval_freq
:
1
random_seed
:
0
output_dir
:
"
./output"
use_cuda
:
True
examples/emotion_detection/download.py
0 → 100644
浏览文件 @
54b3b726
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Download script, download dataset and pretrain models.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
sys
import
time
import
hashlib
import
tarfile
import
requests
def
usage
():
desc
=
(
"
\n
Download datasets and pretrained models for EmotionDetection task.
\n
"
"Usage:
\n
"
" python download.py dataset
\n
"
)
print
(
desc
)
def
md5file
(
fname
):
hash_md5
=
hashlib
.
md5
()
with
io
.
open
(
fname
,
"rb"
)
as
fin
:
for
chunk
in
iter
(
lambda
:
fin
.
read
(
4096
),
b
""
):
hash_md5
.
update
(
chunk
)
return
hash_md5
.
hexdigest
()
def
extract
(
fname
,
dir_path
):
"""
Extract tar.gz file
"""
try
:
tar
=
tarfile
.
open
(
fname
,
"r:gz"
)
file_names
=
tar
.
getnames
()
for
file_name
in
file_names
:
tar
.
extract
(
file_name
,
dir_path
)
print
(
file_name
)
tar
.
close
()
except
Exception
as
e
:
raise
e
def
download
(
url
,
filename
,
md5sum
):
"""
Download file and check md5
"""
retry
=
0
retry_limit
=
3
chunk_size
=
4096
while
not
(
os
.
path
.
exists
(
filename
)
and
md5file
(
filename
)
==
md5sum
):
if
retry
<
retry_limit
:
retry
+=
1
else
:
raise
RuntimeError
(
"Cannot download dataset ({0}) with retry {1} times."
.
format
(
url
,
retry_limit
))
try
:
start
=
time
.
time
()
size
=
0
res
=
requests
.
get
(
url
,
stream
=
True
)
filesize
=
int
(
res
.
headers
[
'content-length'
])
if
res
.
status_code
==
200
:
print
(
"[Filesize]: %0.2f MB"
%
(
filesize
/
1024
/
1024
))
# save by chunk
with
io
.
open
(
filename
,
"wb"
)
as
fout
:
for
chunk
in
res
.
iter_content
(
chunk_size
=
chunk_size
):
if
chunk
:
fout
.
write
(
chunk
)
size
+=
len
(
chunk
)
pr
=
'>'
*
int
(
size
*
50
/
filesize
)
print
(
'
\r
[Process ]: %s%.2f%%'
%
(
pr
,
float
(
size
/
filesize
*
100
)),
end
=
''
)
end
=
time
.
time
()
print
(
"
\n
[CostTime]: %.2f s"
%
(
end
-
start
))
except
Exception
as
e
:
print
(
e
)
def
download_dataset
(
dir_path
):
BASE_URL
=
"https://baidu-nlp.bj.bcebos.com/"
DATASET_NAME
=
"emotion_detection-dataset-1.0.0.tar.gz"
DATASET_MD5
=
"512d256add5f9ebae2c101b74ab053e9"
file_path
=
os
.
path
.
join
(
dir_path
,
DATASET_NAME
)
url
=
BASE_URL
+
DATASET_NAME
if
not
os
.
path
.
exists
(
dir_path
):
os
.
makedirs
(
dir_path
)
# download dataset
print
(
"Downloading dataset: %s"
%
url
)
download
(
url
,
file_path
,
DATASET_MD5
)
# extract dataset
print
(
"Extracting dataset: %s"
%
file_path
)
extract
(
file_path
,
dir_path
)
os
.
remove
(
file_path
)
if
__name__
==
'__main__'
:
if
len
(
sys
.
argv
)
!=
2
:
usage
()
sys
.
exit
(
1
)
if
sys
.
argv
[
1
]
==
"dataset"
:
pwd
=
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'./'
)
download_dataset
(
pwd
)
else
:
usage
()
examples/emotion_detection/download_data.sh
0 → 100644
浏览文件 @
54b3b726
#!/bin/bash
# download dataset file to ./data/
DATA_URL
=
https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz
wget
--no-check-certificate
${
DATA_URL
}
tar
xvf emotion_detection-dataset-1.0.0.tar.gz
/bin/rm emotion_detection-dataset-1.0.0.tar.gz
examples/emotion_detection/models.py
0 → 100644
浏览文件 @
54b3b726
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Linear
,
Embedding
from
paddle.fluid.dygraph.base
import
to_variable
import
numpy
as
np
from
hapi.model
import
Model
from
hapi.text.text
import
GRUEncoderLayer
as
BiGRUEncoder
from
hapi.text.text
import
BOWEncoder
,
CNNEncoder
,
GRUEncoder
,
LSTMEncoder
class
CNN
(
Model
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
CNN
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
class_dim
=
3
self
.
channels
=
1
self
.
win_size
=
[
3
,
self
.
hid_dim
]
self
.
seq_len
=
seq_len
self
.
_encoder
=
CNNEncoder
(
dict_size
=
self
.
dict_dim
+
1
,
emb_dim
=
self
.
emb_dim
,
seq_len
=
self
.
seq_len
,
filter_size
=
self
.
win_size
,
num_filters
=
self
.
hid_dim
,
hidden_dim
=
self
.
hid_dim
,
padding_idx
=
None
,
act
=
'tanh'
)
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
*
self
.
seq_len
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"softmax"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
output_dim
=
self
.
class_dim
,
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
conv_3
=
self
.
_encoder
(
inputs
)
fc_1
=
self
.
_fc1
(
conv_3
)
prediction
=
self
.
_fc_prediction
(
fc_1
)
return
prediction
class
BOW
(
Model
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
BOW
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
class_dim
=
3
self
.
seq_len
=
seq_len
self
.
_encoder
=
BOWEncoder
(
dict_size
=
self
.
dict_dim
+
1
,
emb_dim
=
self
.
emb_dim
,
padding_idx
=
None
,
bow_dim
=
self
.
hid_dim
,
seq_len
=
self
.
seq_len
)
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
hid_dim
,
act
=
"tanh"
)
self
.
_fc2
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
output_dim
=
self
.
class_dim
,
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
bow_1
=
self
.
_encoder
(
inputs
)
bow_1
=
fluid
.
layers
.
tanh
(
bow_1
)
fc_1
=
self
.
_fc1
(
bow_1
)
fc_2
=
self
.
_fc2
(
fc_1
)
prediction
=
self
.
_fc_prediction
(
fc_2
)
return
prediction
class
GRU
(
Model
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
GRU
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
class_dim
=
3
self
.
seq_len
=
seq_len
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
output_dim
=
self
.
class_dim
,
act
=
"softmax"
)
self
.
_encoder
=
GRUEncoder
(
dict_size
=
self
.
dict_dim
+
1
,
emb_dim
=
self
.
emb_dim
,
gru_dim
=
self
.
hid_dim
,
hidden_dim
=
self
.
hid_dim
,
padding_idx
=
None
,
seq_len
=
self
.
seq_len
)
def
forward
(
self
,
inputs
):
emb
=
self
.
_encoder
(
inputs
)
fc_1
=
self
.
_fc1
(
emb
)
prediction
=
self
.
_fc_prediction
(
fc_1
)
return
prediction
class
BiGRU
(
Model
):
def
__init__
(
self
,
dict_dim
,
batch_size
,
seq_len
):
super
(
BiGRU
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
class_dim
=
3
self
.
batch_size
=
batch_size
self
.
seq_len
=
seq_len
self
.
embedding
=
Embedding
(
size
=
[
self
.
dict_dim
+
1
,
self
.
emb_dim
],
dtype
=
'float32'
,
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
30
),
is_sparse
=
False
)
h_0
=
np
.
zeros
((
self
.
batch_size
,
self
.
hid_dim
),
dtype
=
"float32"
)
h_0
=
to_variable
(
h_0
)
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
hid_dim
*
3
)
self
.
_fc2
=
Linear
(
input_dim
=
self
.
hid_dim
*
2
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
output_dim
=
self
.
class_dim
,
act
=
"softmax"
)
self
.
_encoder
=
BiGRUEncoder
(
grnn_hidden_dim
=
self
.
hid_dim
,
input_dim
=
self
.
hid_dim
*
3
,
h_0
=
h_0
,
init_bound
=
0.1
,
is_bidirection
=
True
)
def
forward
(
self
,
inputs
):
emb
=
self
.
embedding
(
inputs
)
emb
=
fluid
.
layers
.
reshape
(
emb
,
shape
=
[
self
.
batch_size
,
-
1
,
self
.
hid_dim
])
fc_1
=
self
.
_fc1
(
emb
)
encoded_vector
=
self
.
_encoder
(
fc_1
)
encoded_vector
=
fluid
.
layers
.
tanh
(
encoded_vector
)
encoded_vector
=
fluid
.
layers
.
reduce_max
(
encoded_vector
,
dim
=
1
)
fc_2
=
self
.
_fc2
(
encoded_vector
)
prediction
=
self
.
_fc_prediction
(
fc_2
)
return
prediction
class
LSTM
(
Model
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
LSTM
,
self
).
__init__
()
self
.
seq_len
=
seq_len
,
self
.
dict_dim
=
dict_dim
,
self
.
emb_dim
=
128
,
self
.
hid_dim
=
128
,
self
.
fc_hid_dim
=
96
,
self
.
class_dim
=
3
,
self
.
emb_lr
=
30.0
,
self
.
_encoder
=
LSTMEncoder
(
dict_size
=
dict_dim
+
1
,
emb_dim
=
self
.
emb_dim
,
lstm_dim
=
self
.
hid_dim
,
hidden_dim
=
self
.
hid_dim
,
seq_len
=
self
.
seq_len
,
padding_idx
=
None
,
is_reverse
=
False
)
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
output_dim
=
self
.
class_dim
,
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
emb
=
self
.
_encoder
(
inputs
)
fc_1
=
self
.
_fc1
(
emb
)
prediction
=
self
.
_fc_prediction
(
fc_1
)
return
prediction
examples/emotion_detection/run_classifier.py
0 → 100644
浏览文件 @
54b3b726
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Emotion Detection Task in Paddle Dygraph Mode.
"""
from
__future__
import
print_function
import
os
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
from
hapi.model
import
set_device
,
CrossEntropy
,
Input
from
hapi.metrics
import
Accuracy
from
hapi.text.emo_tect
import
EmoTectProcessor
from
models
import
CNN
,
BOW
,
GRU
,
BiGRU
,
LSTM
from
hapi.configure
import
Config
import
json
def
main
():
"""
Main Function
"""
args
=
Config
(
yaml_file
=
'./config.yaml'
)
args
.
build
()
args
.
Print
()
if
not
(
args
.
do_train
or
args
.
do_val
or
args
.
do_infer
):
raise
ValueError
(
"For args `do_train`, `do_val` and `do_infer`, at "
"least one of them must be True."
)
place
=
set_device
(
"gpu"
if
args
.
use_cuda
else
"cpu"
)
fluid
.
enable_dygraph
(
place
)
processor
=
EmoTectProcessor
(
data_dir
=
args
.
data_dir
,
vocab_path
=
args
.
vocab_path
,
random_seed
=
args
.
random_seed
)
num_labels
=
args
.
num_labels
if
args
.
model_type
==
'cnn_net'
:
model
=
CNN
(
args
.
vocab_size
,
args
.
max_seq_len
)
elif
args
.
model_type
==
'bow_net'
:
model
=
BOW
(
args
.
vocab_size
,
args
.
max_seq_len
)
elif
args
.
model_type
==
'lstm_net'
:
model
=
LSTM
(
args
.
vocab_size
,
args
.
max_seq_len
)
elif
args
.
model_type
==
'gru_net'
:
model
=
GRU
(
args
.
vocab_size
,
args
.
max_seq_len
)
elif
args
.
model_type
==
'bigru_net'
:
model
=
BiGRU
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
max_seq_len
)
else
:
raise
ValueError
(
"Unknown model type!"
)
inputs
=
[
Input
([
None
,
args
.
max_seq_len
],
'int64'
,
name
=
'doc'
)]
optimizer
=
None
labels
=
None
if
args
.
do_train
:
train_data_generator
=
processor
.
data_generator
(
batch_size
=
args
.
batch_size
,
places
=
place
,
phase
=
'train'
,
epoch
=
args
.
epoch
,
padding_size
=
args
.
max_seq_len
)
num_train_examples
=
processor
.
get_num_examples
(
phase
=
"train"
)
max_train_steps
=
args
.
epoch
*
num_train_examples
//
args
.
batch_size
+
1
print
(
"Num train examples: %d"
%
num_train_examples
)
print
(
"Max train steps: %d"
%
max_train_steps
)
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
args
.
lr
,
parameter_list
=
model
.
parameters
())
test_data_generator
=
None
if
args
.
do_val
:
test_data_generator
=
processor
.
data_generator
(
batch_size
=
args
.
batch_size
,
phase
=
'dev'
,
epoch
=
1
,
places
=
place
,
padding_size
=
args
.
max_seq_len
)
elif
args
.
do_val
:
test_data_generator
=
processor
.
data_generator
(
batch_size
=
args
.
batch_size
,
phase
=
'test'
,
epoch
=
1
,
places
=
place
,
padding_size
=
args
.
max_seq_len
)
elif
args
.
do_infer
:
infer_data_generator
=
processor
.
data_generator
(
batch_size
=
args
.
batch_size
,
phase
=
'infer'
,
epoch
=
1
,
places
=
place
,
padding_size
=
args
.
max_seq_len
)
model
.
prepare
(
optimizer
,
CrossEntropy
(),
Accuracy
(
topk
=
(
1
,)),
inputs
,
labels
,
device
=
place
)
if
args
.
do_train
:
if
args
.
init_checkpoint
:
model
.
load
(
args
.
init_checkpoint
)
elif
args
.
do_val
or
args
.
do_infer
:
if
not
args
.
init_checkpoint
:
raise
ValueError
(
"args 'init_checkpoint' should be set if"
"only doing validation or infer!"
)
model
.
load
(
args
.
init_checkpoint
,
reset_optimizer
=
True
)
if
args
.
do_train
:
model
.
fit
(
train_data
=
train_data_generator
,
eval_data
=
test_data_generator
,
batch_size
=
args
.
batch_size
,
epochs
=
args
.
epoch
,
save_dir
=
args
.
checkpoints
,
eval_freq
=
args
.
eval_freq
,
save_freq
=
args
.
save_freq
)
elif
args
.
do_val
:
eval_result
=
model
.
evaluate
(
eval_data
=
test_data_generator
,
batch_size
=
args
.
batch_size
)
print
(
"Final eval result: acc: {:.4f}, loss: {:.4f}"
.
format
(
eval_result
[
'acc'
],
eval_result
[
'loss'
][
0
]))
elif
args
.
do_infer
:
preds
=
model
.
predict
(
test_data
=
infer_data_generator
)
preds
=
np
.
array
(
preds
[
0
]).
reshape
((
-
1
,
args
.
num_labels
))
if
args
.
output_dir
:
with
open
(
os
.
path
.
join
(
args
.
output_dir
,
'predictions.json'
),
'w'
)
as
w
:
for
p
in
range
(
len
(
preds
)):
label
=
np
.
argmax
(
preds
[
p
])
result
=
json
.
dumps
({
'index'
:
p
,
'label'
:
label
,
'probs'
:
preds
[
p
].
tolist
()})
w
.
write
(
result
+
'
\n
'
)
print
(
'Predictions saved at '
+
os
.
path
.
join
(
args
.
output_dir
,
'predictions.json'
))
if
__name__
==
"__main__"
:
main
()
examples/sentiment_classification/models.py
浏览文件 @
54b3b726
...
@@ -17,11 +17,11 @@ from paddle.fluid.dygraph.base import to_variable
...
@@ -17,11 +17,11 @@ from paddle.fluid.dygraph.base import to_variable
import
numpy
as
np
import
numpy
as
np
from
hapi.model
import
Model
from
hapi.model
import
Model
from
hapi.text.text
import
GRUEncoderLayer
as
BiGRUEncoder
from
hapi.text.text
import
GRUEncoderLayer
as
BiGRUEncoder
from
hapi.text.te
st
import
BOWEncoder
,
CNNEncoder
,
GRU
Encoder
from
hapi.text.te
xt
import
BOWEncoder
,
CNNEncoder
,
GRUEncoder
,
LSTM
Encoder
class
CNN
(
Model
):
class
CNN
(
Model
):
def
__init__
(
self
,
dict_dim
,
batch_size
,
seq_len
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
CNN
,
self
).
__init__
()
super
(
CNN
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
emb_dim
=
128
...
@@ -30,7 +30,6 @@ class CNN(Model):
...
@@ -30,7 +30,6 @@ class CNN(Model):
self
.
class_dim
=
2
self
.
class_dim
=
2
self
.
channels
=
1
self
.
channels
=
1
self
.
win_size
=
[
3
,
self
.
hid_dim
]
self
.
win_size
=
[
3
,
self
.
hid_dim
]
self
.
batch_size
=
batch_size
self
.
seq_len
=
seq_len
self
.
seq_len
=
seq_len
self
.
_encoder
=
CNNEncoder
(
self
.
_encoder
=
CNNEncoder
(
dict_size
=
self
.
dict_dim
+
1
,
dict_size
=
self
.
dict_dim
+
1
,
...
@@ -54,14 +53,13 @@ class CNN(Model):
...
@@ -54,14 +53,13 @@ class CNN(Model):
class
BOW
(
Model
):
class
BOW
(
Model
):
def
__init__
(
self
,
dict_dim
,
batch_size
,
seq_len
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
BOW
,
self
).
__init__
()
super
(
BOW
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
fc_hid_dim
=
96
self
.
class_dim
=
2
self
.
class_dim
=
2
self
.
batch_size
=
batch_size
self
.
seq_len
=
seq_len
self
.
seq_len
=
seq_len
self
.
_encoder
=
BOWEncoder
(
self
.
_encoder
=
BOWEncoder
(
dict_size
=
self
.
dict_dim
+
1
,
dict_size
=
self
.
dict_dim
+
1
,
...
@@ -85,14 +83,13 @@ class BOW(Model):
...
@@ -85,14 +83,13 @@ class BOW(Model):
class
GRU
(
Model
):
class
GRU
(
Model
):
def
__init__
(
self
,
dict_dim
,
batch_size
,
seq_len
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
GRU
,
self
).
__init__
()
super
(
GRU
,
self
).
__init__
()
self
.
dict_dim
=
dict_dim
self
.
dict_dim
=
dict_dim
self
.
emb_dim
=
128
self
.
emb_dim
=
128
self
.
hid_dim
=
128
self
.
hid_dim
=
128
self
.
fc_hid_dim
=
96
self
.
fc_hid_dim
=
96
self
.
class_dim
=
2
self
.
class_dim
=
2
self
.
batch_size
=
batch_size
self
.
seq_len
=
seq_len
self
.
seq_len
=
seq_len
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
...
@@ -152,3 +149,32 @@ class BiGRU(Model):
...
@@ -152,3 +149,32 @@ class BiGRU(Model):
fc_2
=
self
.
_fc2
(
encoded_vector
)
fc_2
=
self
.
_fc2
(
encoded_vector
)
prediction
=
self
.
_fc_prediction
(
fc_2
)
prediction
=
self
.
_fc_prediction
(
fc_2
)
return
prediction
return
prediction
class
LSTM
(
Model
):
def
__init__
(
self
,
dict_dim
,
seq_len
):
super
(
LSTM
,
self
).
__init__
()
self
.
seq_len
=
seq_len
,
self
.
dict_dim
=
dict_dim
,
self
.
emb_dim
=
128
,
self
.
hid_dim
=
128
,
self
.
fc_hid_dim
=
96
,
self
.
class_dim
=
2
,
self
.
emb_lr
=
30.0
,
self
.
_encoder
=
LSTMEncoder
(
dict_size
=
dict_dim
+
1
,
emb_dim
=
self
.
emb_dim
,
lstm_dim
=
self
.
hid_dim
,
hidden_dim
=
self
.
hid_dim
,
seq_len
=
self
.
seq_len
,
padding_idx
=
None
,
is_reverse
=
False
)
self
.
_fc1
=
Linear
(
input_dim
=
self
.
hid_dim
,
output_dim
=
self
.
fc_hid_dim
,
act
=
"tanh"
)
self
.
_fc_prediction
=
Linear
(
input_dim
=
self
.
fc_hid_dim
,
output_dim
=
self
.
class_dim
,
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
emb
=
self
.
_encoder
(
inputs
)
fc_1
=
self
.
_fc1
(
emb
)
prediction
=
self
.
_fc_prediction
(
fc_1
)
return
prediction
examples/sentiment_classification/sentiment_classifier.py
浏览文件 @
54b3b726
...
@@ -17,11 +17,11 @@
...
@@ -17,11 +17,11 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
hapi.model
import
set_device
,
Model
,
CrossEntropy
,
Input
from
hapi.model
import
set_device
,
CrossEntropy
,
Input
from
hapi.configure
import
Config
from
hapi.configure
import
Config
from
hapi.text.senta
import
SentaProcessor
from
hapi.text.senta
import
SentaProcessor
from
hapi.metrics
import
Accuracy
from
hapi.metrics
import
Accuracy
from
models
import
CNN
,
BOW
,
GRU
,
BiGRU
from
models
import
CNN
,
BOW
,
GRU
,
BiGRU
,
LSTM
import
json
import
json
import
os
import
os
...
@@ -38,6 +38,26 @@ def main():
...
@@ -38,6 +38,26 @@ def main():
elif
args
.
do_infer
:
elif
args
.
do_infer
:
infer
()
infer
()
def
create_model
():
if
args
.
model_type
==
'cnn_net'
:
model
=
CNN
(
args
.
vocab_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'bow_net'
:
model
=
BOW
(
args
.
vocab_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'lstm_net'
:
model
=
LSTM
(
args
.
vocab_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'gru_net'
:
model
=
GRU
(
args
.
vocab_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'bigru_net'
:
model
=
BiGRU
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
else
:
raise
ValueError
(
"Unknown model type!"
)
return
model
def
train
():
def
train
():
fluid
.
enable_dygraph
(
device
)
fluid
.
enable_dygraph
(
device
)
processor
=
SentaProcessor
(
processor
=
SentaProcessor
(
...
@@ -65,23 +85,13 @@ def train():
...
@@ -65,23 +85,13 @@ def train():
phase
=
'dev'
,
phase
=
'dev'
,
epoch
=
args
.
epoch
,
epoch
=
args
.
epoch
,
shuffle
=
False
)
shuffle
=
False
)
if
args
.
model_type
==
'cnn_net'
:
model
=
CNN
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'bow_net'
:
model
=
BOW
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'gru_net'
:
model
=
GRU
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'bigru_net'
:
model
=
BiGRU
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
args
.
lr
,
parameter_list
=
model
.
parameters
())
inputs
=
[
Input
([
None
,
None
],
'int64'
,
name
=
'doc'
)]
inputs
=
[
Input
([
None
,
None
],
'int64'
,
name
=
'doc'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
model
=
create_model
()
optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
args
.
lr
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
model
.
prepare
(
optimizer
,
optimizer
,
...
@@ -113,19 +123,8 @@ def infer():
...
@@ -113,19 +123,8 @@ def infer():
phase
=
'infer'
,
phase
=
'infer'
,
epoch
=
1
,
epoch
=
1
,
shuffle
=
False
)
shuffle
=
False
)
if
args
.
model_type
==
'cnn_net'
:
model_infer
=
CNN
(
args
.
vocab_size
,
args
.
batch_size
,
model_infer
=
create_model
()
args
.
padding_size
)
elif
args
.
model_type
==
'bow_net'
:
model_infer
=
BOW
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'gru_net'
:
model_infer
=
GRU
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
elif
args
.
model_type
==
'bigru_net'
:
model_infer
=
BiGRU
(
args
.
vocab_size
,
args
.
batch_size
,
args
.
padding_size
)
print
(
'Do inferring ...... '
)
print
(
'Do inferring ...... '
)
inputs
=
[
Input
([
None
,
None
],
'int64'
,
name
=
'doc'
)]
inputs
=
[
Input
([
None
,
None
],
'int64'
,
name
=
'doc'
)]
model_infer
.
prepare
(
model_infer
.
prepare
(
...
...
hapi/text/emo_tect/__init__.py
0 → 100644
浏览文件 @
54b3b726
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
hapi.text.emo_tect.data_processor
import
EmoTectProcessor
hapi/text/emo_tect/data_processor.py
0 → 100644
浏览文件 @
54b3b726
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
from
hapi.text.emo_tect.data_reader
import
load_vocab
from
hapi.text.emo_tect.data_reader
import
data_reader
from
paddle.io
import
DataLoader
class
EmoTectProcessor
(
object
):
def
__init__
(
self
,
data_dir
,
vocab_path
,
random_seed
=
None
):
self
.
data_dir
=
data_dir
self
.
vocab
=
load_vocab
(
vocab_path
)
self
.
num_examples
=
{
"train"
:
-
1
,
"dev"
:
-
1
,
"test"
:
-
1
,
"infer"
:
-
1
}
np
.
random
.
seed
(
random_seed
)
def
get_train_examples
(
self
,
data_dir
,
epoch
,
shuffle
,
batch_size
,
places
,
padding_size
):
train_reader
=
data_reader
((
self
.
data_dir
+
"/train.tsv"
),
self
.
vocab
,
self
.
num_examples
,
"train"
,
epoch
,
padding_size
,
shuffle
)
loader
=
DataLoader
.
from_generator
(
capacity
=
50
,
return_list
=
True
)
loader
.
set_sample_generator
(
train_reader
,
batch_size
=
batch_size
,
drop_last
=
False
,
places
=
places
)
return
loader
def
get_dev_examples
(
self
,
data_dir
,
epoch
,
shuffle
,
batch_size
,
places
,
padding_size
):
dev_reader
=
data_reader
((
self
.
data_dir
+
"/dev.tsv"
),
self
.
vocab
,
self
.
num_examples
,
"dev"
,
epoch
,
padding_size
,
shuffle
)
loader
=
DataLoader
.
from_generator
(
capacity
=
50
,
return_list
=
True
)
loader
.
set_sample_generator
(
dev_reader
,
batch_size
=
batch_size
,
drop_last
=
False
,
places
=
places
)
return
loader
def
get_test_examples
(
self
,
data_dir
,
epoch
,
batch_size
,
places
,
padding_size
):
test_reader
=
data_reader
((
self
.
data_dir
+
"/test.tsv"
),
self
.
vocab
,
self
.
num_examples
,
"test"
,
epoch
,
padding_size
)
loader
=
DataLoader
.
from_generator
(
capacity
=
50
,
return_list
=
True
)
loader
.
set_sample_generator
(
test_reader
,
batch_size
=
batch_size
,
drop_last
=
False
,
places
=
places
)
return
loader
def
get_infer_examples
(
self
,
data_dir
,
epoch
,
batch_size
,
places
,
padding_size
):
infer_reader
=
data_reader
((
self
.
data_dir
+
"/infer.tsv"
),
self
.
vocab
,
self
.
num_examples
,
"infer"
,
epoch
,
padding_size
)
loader
=
DataLoader
.
from_generator
(
capacity
=
50
,
return_list
=
True
)
loader
.
set_sample_generator
(
infer_reader
,
batch_size
=
batch_size
,
drop_last
=
False
,
places
=
places
)
return
loader
def
get_labels
(
self
):
return
[
"0"
,
"1"
,
"2"
]
def
get_num_examples
(
self
,
phase
):
if
phase
not
in
[
'train'
,
'dev'
,
'test'
,
'infer'
]:
raise
ValueError
(
"Unknown phase, which should be in ['train', 'dev', 'infer']."
)
return
self
.
num_examples
[
phase
]
def
get_train_progress
(
self
):
return
self
.
current_train_example
,
self
.
current_train_epoch
def
data_generator
(
self
,
padding_size
,
batch_size
,
places
,
phase
=
'train'
,
epoch
=
1
,
shuffle
=
True
):
if
phase
==
"train"
:
return
self
.
get_train_examples
(
self
.
data_dir
,
epoch
,
shuffle
,
batch_size
,
places
,
padding_size
)
elif
phase
==
"dev"
:
return
self
.
get_dev_examples
(
self
.
data_dir
,
epoch
,
shuffle
,
batch_size
,
places
,
padding_size
)
elif
phase
==
"test"
:
return
self
.
get_test_examples
(
self
.
data_dir
,
epoch
,
batch_size
,
places
,
padding_size
)
elif
phase
==
"infer"
:
return
self
.
get_infer_examples
(
self
.
data_dir
,
epoch
,
batch_size
,
places
,
padding_size
)
else
:
raise
ValueError
(
"Unknown phase, which should be in ['train', 'dev', 'infer']."
)
hapi/text/emo_tect/data_reader.py
0 → 100644
浏览文件 @
54b3b726
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
io
import
os
import
sys
import
six
import
random
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
def
word2id
(
word_dict
,
query
):
"""
Convert word sequence into id list
"""
unk_id
=
len
(
word_dict
)
wids
=
[
word_dict
[
w
]
if
w
in
word_dict
else
unk_id
for
w
in
query
.
strip
().
split
(
" "
)
]
return
wids
def
pad_wid
(
wids
,
max_seq_len
=
128
,
pad_id
=
0
):
"""
Padding data to max_seq_len
"""
seq_len
=
len
(
wids
)
if
seq_len
<
max_seq_len
:
for
i
in
range
(
max_seq_len
-
seq_len
):
wids
.
append
(
pad_id
)
else
:
wids
=
wids
[:
max_seq_len
]
return
wids
def
data_reader
(
file_path
,
word_dict
,
num_examples
,
phase
,
epoch
,
max_seq_len
,
shuffle
=
False
):
"""
Data reader, which convert word sequence into id list
"""
unk_id
=
len
(
word_dict
)
all_data
=
[]
with
io
.
open
(
file_path
,
"r"
,
encoding
=
'utf8'
)
as
fin
:
for
line
in
fin
:
if
line
.
startswith
(
"label"
):
continue
if
phase
==
"infer"
:
cols
=
line
.
strip
().
split
(
"
\t
"
)
query
=
cols
[
-
1
]
if
len
(
cols
)
!=
-
1
else
cols
[
0
]
wids
=
word2id
(
word_dict
,
query
)
wids
=
pad_wid
(
wids
,
max_seq_len
,
unk_id
)
all_data
.
append
((
wids
))
else
:
cols
=
line
.
strip
().
split
(
"
\t
"
)
if
len
(
cols
)
!=
2
:
sys
.
stderr
.
write
(
"[NOTICE] Error Format Line!"
)
continue
label
=
[
int
(
cols
[
0
])]
query
=
cols
[
1
].
strip
()
wids
=
word2id
(
word_dict
,
query
)
wids
=
pad_wid
(
wids
,
max_seq_len
,
unk_id
)
all_data
.
append
((
wids
,
label
))
num_examples
[
phase
]
=
len
(
all_data
)
if
phase
==
"infer"
:
def
reader
():
"""
Infer reader function
"""
for
wids
in
all_data
:
yield
wids
return
reader
def
reader
():
"""
Reader function
"""
for
idx
in
range
(
epoch
):
if
phase
==
"train"
and
shuffle
:
random
.
shuffle
(
all_data
)
for
wids
,
label
in
all_data
:
yield
wids
,
label
return
reader
def
load_vocab
(
file_path
):
"""
load the given vocabulary
"""
vocab
=
{}
with
io
.
open
(
file_path
,
'r'
,
encoding
=
'utf8'
)
as
fin
:
wid
=
0
for
line
in
fin
:
if
line
.
strip
()
not
in
vocab
:
vocab
[
line
.
strip
()]
=
wid
wid
+=
1
vocab
[
"<unk>"
]
=
len
(
vocab
)
return
vocab
def
query2ids
(
vocab_path
,
query
):
"""
Convert query to id list according to the given vocab
"""
vocab
=
load_vocab
(
vocab_path
)
wids
=
word2id
(
vocab
,
query
)
return
wids
hapi/text/senta/__init__.py
浏览文件 @
54b3b726
...
@@ -12,4 +12,4 @@
...
@@ -12,4 +12,4 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
hapi.text.senta.data_process
e
r
import
SentaProcessor
from
hapi.text.senta.data_process
o
r
import
SentaProcessor
hapi/text/senta/data_process
e
r.py
→
hapi/text/senta/data_process
o
r.py
浏览文件 @
54b3b726
文件已移动
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录