提交 54b3b726 编写于 作者: W wangxiao1021

add emotion_detection and update senta

上级 cea791c6
model_type: "bow_net"
num_labels: 3
vocab_size: 240465
vocab_path: "./data/vocab.txt"
data_dir: "./data"
inference_model_dir: "./inference_model"
save_checkpoint_dir: ""
init_checkpoint: ""
checkpoints: "./checkpoints/"
lr: 0.02
epoch: 10
batch_size: 24
do_train: True
do_val: True
do_infer: False
do_save_inference_model: False
max_seq_len: 20
skip_steps: 10
save_freq: 1
eval_freq: 1
random_seed: 0
output_dir: "./output"
use_cuda: True
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Download script, download dataset and pretrain models.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import io
import os
import sys
import time
import hashlib
import tarfile
import requests
def usage():
desc = ("\nDownload datasets and pretrained models for EmotionDetection task.\n"
"Usage:\n"
" python download.py dataset\n")
print(desc)
def md5file(fname):
hash_md5 = hashlib.md5()
with io.open(fname, "rb") as fin:
for chunk in iter(lambda: fin.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def extract(fname, dir_path):
"""
Extract tar.gz file
"""
try:
tar = tarfile.open(fname, "r:gz")
file_names = tar.getnames()
for file_name in file_names:
tar.extract(file_name, dir_path)
print(file_name)
tar.close()
except Exception as e:
raise e
def download(url, filename, md5sum):
"""
Download file and check md5
"""
retry = 0
retry_limit = 3
chunk_size = 4096
while not (os.path.exists(filename) and md5file(filename) == md5sum):
if retry < retry_limit:
retry += 1
else:
raise RuntimeError("Cannot download dataset ({0}) with retry {1} times.".
format(url, retry_limit))
try:
start = time.time()
size = 0
res = requests.get(url, stream=True)
filesize = int(res.headers['content-length'])
if res.status_code == 200:
print("[Filesize]: %0.2f MB" % (filesize / 1024 / 1024))
# save by chunk
with io.open(filename, "wb") as fout:
for chunk in res.iter_content(chunk_size=chunk_size):
if chunk:
fout.write(chunk)
size += len(chunk)
pr = '>' * int(size * 50 / filesize)
print('\r[Process ]: %s%.2f%%' % (pr, float(size / filesize*100)), end='')
end = time.time()
print("\n[CostTime]: %.2f s" % (end - start))
except Exception as e:
print(e)
def download_dataset(dir_path):
BASE_URL = "https://baidu-nlp.bj.bcebos.com/"
DATASET_NAME = "emotion_detection-dataset-1.0.0.tar.gz"
DATASET_MD5 = "512d256add5f9ebae2c101b74ab053e9"
file_path = os.path.join(dir_path, DATASET_NAME)
url = BASE_URL + DATASET_NAME
if not os.path.exists(dir_path):
os.makedirs(dir_path)
# download dataset
print("Downloading dataset: %s" % url)
download(url, file_path, DATASET_MD5)
# extract dataset
print("Extracting dataset: %s" % file_path)
extract(file_path, dir_path)
os.remove(file_path)
if __name__ == '__main__':
if len(sys.argv) != 2:
usage()
sys.exit(1)
if sys.argv[1] == "dataset":
pwd = os.path.join(os.path.dirname(__file__), './')
download_dataset(pwd)
else:
usage()
#!/bin/bash
# download dataset file to ./data/
DATA_URL=https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz
wget --no-check-certificate ${DATA_URL}
tar xvf emotion_detection-dataset-1.0.0.tar.gz
/bin/rm emotion_detection-dataset-1.0.0.tar.gz
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear, Embedding
from paddle.fluid.dygraph.base import to_variable
import numpy as np
from hapi.model import Model
from hapi.text.text import GRUEncoderLayer as BiGRUEncoder
from hapi.text.text import BOWEncoder, CNNEncoder, GRUEncoder, LSTMEncoder
class CNN(Model):
def __init__(self, dict_dim, seq_len):
super(CNN, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 3
self.channels = 1
self.win_size = [3, self.hid_dim]
self.seq_len = seq_len
self._encoder = CNNEncoder(
dict_size=self.dict_dim + 1,
emb_dim=self.emb_dim,
seq_len=self.seq_len,
filter_size= self.win_size,
num_filters= self.hid_dim,
hidden_dim= self.hid_dim,
padding_idx=None,
act='tanh')
self._fc1 = Linear(input_dim = self.hid_dim*self.seq_len, output_dim=self.fc_hid_dim, act="softmax")
self._fc_prediction = Linear(input_dim = self.fc_hid_dim,
output_dim = self.class_dim,
act="softmax")
def forward(self, inputs):
conv_3 = self._encoder(inputs)
fc_1 = self._fc1(conv_3)
prediction = self._fc_prediction(fc_1)
return prediction
class BOW(Model):
def __init__(self, dict_dim, seq_len):
super(BOW, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 3
self.seq_len = seq_len
self._encoder = BOWEncoder(
dict_size=self.dict_dim + 1,
emb_dim=self.emb_dim,
padding_idx=None,
bow_dim=self.hid_dim,
seq_len=self.seq_len)
self._fc1 = Linear(input_dim = self.hid_dim, output_dim=self.hid_dim, act="tanh")
self._fc2 = Linear(input_dim = self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
self._fc_prediction = Linear(input_dim = self.fc_hid_dim,
output_dim = self.class_dim,
act="softmax")
def forward(self, inputs):
bow_1 = self._encoder(inputs)
bow_1 = fluid.layers.tanh(bow_1)
fc_1 = self._fc1(bow_1)
fc_2 = self._fc2(fc_1)
prediction = self._fc_prediction(fc_2)
return prediction
class GRU(Model):
def __init__(self, dict_dim, seq_len):
super(GRU, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 3
self.seq_len = seq_len
self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
output_dim=self.class_dim,
act="softmax")
self._encoder = GRUEncoder(
dict_size=self.dict_dim + 1,
emb_dim=self.emb_dim,
gru_dim=self.hid_dim,
hidden_dim=self.hid_dim,
padding_idx=None,
seq_len=self.seq_len)
def forward(self, inputs):
emb = self._encoder(inputs)
fc_1 = self._fc1(emb)
prediction = self._fc_prediction(fc_1)
return prediction
class BiGRU(Model):
def __init__(self, dict_dim, batch_size, seq_len):
super(BiGRU, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 3
self.batch_size = batch_size
self.seq_len = seq_len
self.embedding = Embedding(
size=[self.dict_dim + 1, self.emb_dim],
dtype='float32',
param_attr=fluid.ParamAttr(learning_rate=30),
is_sparse=False)
h_0 = np.zeros((self.batch_size, self.hid_dim), dtype="float32")
h_0 = to_variable(h_0)
self._fc1 = Linear(input_dim = self.hid_dim, output_dim=self.hid_dim*3)
self._fc2 = Linear(input_dim = self.hid_dim*2, output_dim=self.fc_hid_dim, act="tanh")
self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
output_dim=self.class_dim,
act="softmax")
self._encoder = BiGRUEncoder(
grnn_hidden_dim=self.hid_dim,
input_dim=self.hid_dim * 3,
h_0=h_0,
init_bound=0.1,
is_bidirection=True)
def forward(self, inputs):
emb = self.embedding(inputs)
emb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])
fc_1 = self._fc1(emb)
encoded_vector = self._encoder(fc_1)
encoded_vector = fluid.layers.tanh(encoded_vector)
encoded_vector = fluid.layers.reduce_max(encoded_vector, dim=1)
fc_2 = self._fc2(encoded_vector)
prediction = self._fc_prediction(fc_2)
return prediction
class LSTM(Model):
def __init__(self, dict_dim, seq_len):
super(LSTM, self).__init__()
self.seq_len = seq_len,
self.dict_dim = dict_dim,
self.emb_dim = 128,
self.hid_dim = 128,
self.fc_hid_dim = 96,
self.class_dim = 3,
self.emb_lr = 30.0,
self._encoder = LSTMEncoder(
dict_size=dict_dim + 1,
emb_dim=self.emb_dim,
lstm_dim=self.hid_dim,
hidden_dim=self.hid_dim,
seq_len=self.seq_len,
padding_idx=None,
is_reverse=False)
self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
output_dim=self.class_dim,
act="softmax")
def forward(self, inputs):
emb = self._encoder(inputs)
fc_1 = self._fc1(emb)
prediction = self._fc_prediction(fc_1)
return prediction
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Emotion Detection Task in Paddle Dygraph Mode.
"""
from __future__ import print_function
import os
import paddle
import paddle.fluid as fluid
import numpy as np
from hapi.model import set_device, CrossEntropy, Input
from hapi.metrics import Accuracy
from hapi.text.emo_tect import EmoTectProcessor
from models import CNN, BOW, GRU, BiGRU, LSTM
from hapi.configure import Config
import json
def main():
"""
Main Function
"""
args = Config(yaml_file='./config.yaml')
args.build()
args.Print()
if not (args.do_train or args.do_val or args.do_infer):
raise ValueError("For args `do_train`, `do_val` and `do_infer`, at "
"least one of them must be True.")
place = set_device("gpu" if args.use_cuda else "cpu")
fluid.enable_dygraph(place)
processor = EmoTectProcessor(
data_dir=args.data_dir,
vocab_path=args.vocab_path,
random_seed=args.random_seed)
num_labels = args.num_labels
if args.model_type == 'cnn_net':
model = CNN( args.vocab_size,
args.max_seq_len)
elif args.model_type == 'bow_net':
model = BOW( args.vocab_size,
args.max_seq_len)
elif args.model_type == 'lstm_net':
model = LSTM( args.vocab_size,
args.max_seq_len)
elif args.model_type == 'gru_net':
model = GRU( args.vocab_size,
args.max_seq_len)
elif args.model_type == 'bigru_net':
model = BiGRU( args.vocab_size,
args.batch_size,
args.max_seq_len)
else:
raise ValueError("Unknown model type!")
inputs = [Input([None, args.max_seq_len], 'int64', name='doc')]
optimizer = None
labels = None
if args.do_train:
train_data_generator = processor.data_generator(
batch_size=args.batch_size,
places=place,
phase='train',
epoch=args.epoch,
padding_size=args.max_seq_len)
num_train_examples = processor.get_num_examples(phase="train")
max_train_steps = args.epoch * num_train_examples // args.batch_size + 1
print("Num train examples: %d" % num_train_examples)
print("Max train steps: %d" % max_train_steps)
labels = [Input([None, 1], 'int64', name='label')]
optimizer = fluid.optimizer.Adagrad(learning_rate=args.lr, parameter_list=model.parameters())
test_data_generator = None
if args.do_val:
test_data_generator = processor.data_generator(
batch_size=args.batch_size,
phase='dev',
epoch=1,
places=place,
padding_size=args.max_seq_len)
elif args.do_val:
test_data_generator = processor.data_generator(
batch_size=args.batch_size,
phase='test',
epoch=1,
places=place,
padding_size=args.max_seq_len)
elif args.do_infer:
infer_data_generator = processor.data_generator(
batch_size=args.batch_size,
phase='infer',
epoch=1,
places=place,
padding_size=args.max_seq_len)
model.prepare(
optimizer,
CrossEntropy(),
Accuracy(topk=(1,)),
inputs,
labels,
device=place)
if args.do_train:
if args.init_checkpoint:
model.load(args.init_checkpoint)
elif args.do_val or args.do_infer:
if not args.init_checkpoint:
raise ValueError("args 'init_checkpoint' should be set if"
"only doing validation or infer!")
model.load(args.init_checkpoint, reset_optimizer=True)
if args.do_train:
model.fit(train_data=train_data_generator,
eval_data=test_data_generator,
batch_size=args.batch_size,
epochs=args.epoch,
save_dir=args.checkpoints,
eval_freq=args.eval_freq,
save_freq=args.save_freq)
elif args.do_val:
eval_result = model.evaluate(eval_data=test_data_generator,
batch_size=args.batch_size)
print("Final eval result: acc: {:.4f}, loss: {:.4f}".format(eval_result['acc'], eval_result['loss'][0]))
elif args.do_infer:
preds = model.predict(test_data=infer_data_generator)
preds = np.array(preds[0]).reshape((-1, args.num_labels))
if args.output_dir:
with open(os.path.join(args.output_dir, 'predictions.json'), 'w') as w:
for p in range(len(preds)):
label = np.argmax(preds[p])
result = json.dumps({'index': p, 'label': label, 'probs': preds[p].tolist()})
w.write(result+'\n')
print('Predictions saved at '+os.path.join(args.output_dir, 'predictions.json'))
if __name__ == "__main__":
main()
......@@ -17,11 +17,11 @@ from paddle.fluid.dygraph.base import to_variable
import numpy as np
from hapi.model import Model
from hapi.text.text import GRUEncoderLayer as BiGRUEncoder
from hapi.text.test import BOWEncoder, CNNEncoder, GRUEncoder
from hapi.text.text import BOWEncoder, CNNEncoder, GRUEncoder, LSTMEncoder
class CNN(Model):
def __init__(self, dict_dim, batch_size, seq_len):
def __init__(self, dict_dim, seq_len):
super(CNN, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
......@@ -30,7 +30,6 @@ class CNN(Model):
self.class_dim = 2
self.channels = 1
self.win_size = [3, self.hid_dim]
self.batch_size = batch_size
self.seq_len = seq_len
self._encoder = CNNEncoder(
dict_size=self.dict_dim + 1,
......@@ -54,14 +53,13 @@ class CNN(Model):
class BOW(Model):
def __init__(self, dict_dim, batch_size, seq_len):
def __init__(self, dict_dim, seq_len):
super(BOW, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 2
self.batch_size = batch_size
self.seq_len = seq_len
self._encoder = BOWEncoder(
dict_size=self.dict_dim + 1,
......@@ -85,14 +83,13 @@ class BOW(Model):
class GRU(Model):
def __init__(self, dict_dim, batch_size, seq_len):
def __init__(self, dict_dim, seq_len):
super(GRU, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = 128
self.hid_dim = 128
self.fc_hid_dim = 96
self.class_dim = 2
self.batch_size = batch_size
self.seq_len = seq_len
self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
......@@ -152,3 +149,32 @@ class BiGRU(Model):
fc_2 = self._fc2(encoded_vector)
prediction = self._fc_prediction(fc_2)
return prediction
class LSTM(Model):
def __init__(self, dict_dim, seq_len):
super(LSTM, self).__init__()
self.seq_len = seq_len,
self.dict_dim = dict_dim,
self.emb_dim = 128,
self.hid_dim = 128,
self.fc_hid_dim = 96,
self.class_dim = 2,
self.emb_lr = 30.0,
self._encoder = LSTMEncoder(
dict_size=dict_dim + 1,
emb_dim=self.emb_dim,
lstm_dim=self.hid_dim,
hidden_dim=self.hid_dim,
seq_len=self.seq_len,
padding_idx=None,
is_reverse=False)
self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="tanh")
self._fc_prediction = Linear(input_dim=self.fc_hid_dim,
output_dim=self.class_dim,
act="softmax")
def forward(self, inputs):
emb = self._encoder(inputs)
fc_1 = self._fc1(emb)
prediction = self._fc_prediction(fc_1)
return prediction
......@@ -17,11 +17,11 @@
from __future__ import print_function
import numpy as np
import paddle.fluid as fluid
from hapi.model import set_device, Model, CrossEntropy, Input
from hapi.model import set_device, CrossEntropy, Input
from hapi.configure import Config
from hapi.text.senta import SentaProcessor
from hapi.metrics import Accuracy
from models import CNN, BOW, GRU, BiGRU
from models import CNN, BOW, GRU, BiGRU, LSTM
import json
import os
......@@ -38,6 +38,26 @@ def main():
elif args.do_infer:
infer()
def create_model():
if args.model_type == 'cnn_net':
model = CNN( args.vocab_size,
args.padding_size)
elif args.model_type == 'bow_net':
model = BOW( args.vocab_size,
args.padding_size)
elif args.model_type == 'lstm_net':
model = LSTM( args.vocab_size,
args.padding_size)
elif args.model_type == 'gru_net':
model = GRU( args.vocab_size,
args.padding_size)
elif args.model_type == 'bigru_net':
model = BiGRU( args.vocab_size, args.batch_size,
args.padding_size)
else:
raise ValueError("Unknown model type!")
return model
def train():
fluid.enable_dygraph(device)
processor = SentaProcessor(
......@@ -65,23 +85,13 @@ def train():
phase='dev',
epoch=args.epoch,
shuffle=False)
if args.model_type == 'cnn_net':
model = CNN( args.vocab_size, args.batch_size,
args.padding_size)
elif args.model_type == 'bow_net':
model = BOW( args.vocab_size, args.batch_size,
args.padding_size)
elif args.model_type == 'gru_net':
model = GRU( args.vocab_size, args.batch_size,
args.padding_size)
elif args.model_type == 'bigru_net':
model = BiGRU( args.vocab_size, args.batch_size,
args.padding_size)
optimizer = fluid.optimizer.Adagrad(learning_rate=args.lr, parameter_list=model.parameters())
inputs = [Input([None, None], 'int64', name='doc')]
labels = [Input([None, 1], 'int64', name='label')]
model = create_model()
optimizer = fluid.optimizer.Adagrad(learning_rate=args.lr, parameter_list=model.parameters())
model.prepare(
optimizer,
......@@ -113,19 +123,8 @@ def infer():
phase='infer',
epoch=1,
shuffle=False)
if args.model_type == 'cnn_net':
model_infer = CNN( args.vocab_size, args.batch_size,
args.padding_size)
elif args.model_type == 'bow_net':
model_infer = BOW( args.vocab_size, args.batch_size,
args.padding_size)
elif args.model_type == 'gru_net':
model_infer = GRU( args.vocab_size, args.batch_size,
args.padding_size)
elif args.model_type == 'bigru_net':
model_infer = BiGRU( args.vocab_size, args.batch_size,
args.padding_size)
model_infer = create_model()
print('Do inferring ...... ')
inputs = [Input([None, None], 'int64', name='doc')]
model_infer.prepare(
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from hapi.text.emo_tect.data_processor import EmoTectProcessor
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from hapi.text.emo_tect.data_reader import load_vocab
from hapi.text.emo_tect.data_reader import data_reader
from paddle.io import DataLoader
class EmoTectProcessor(object):
def __init__(self, data_dir, vocab_path, random_seed=None):
self.data_dir = data_dir
self.vocab = load_vocab(vocab_path)
self.num_examples = {"train": -1, "dev": -1, "test": -1, "infer": -1}
np.random.seed(random_seed)
def get_train_examples(self, data_dir, epoch, shuffle, batch_size, places, padding_size):
train_reader = data_reader((self.data_dir + "/train.tsv"), self.vocab,
self.num_examples, "train", epoch, padding_size, shuffle)
loader = DataLoader.from_generator(capacity=50, return_list=True)
loader.set_sample_generator(train_reader, batch_size=batch_size, drop_last=False, places=places)
return loader
def get_dev_examples(self, data_dir, epoch, shuffle, batch_size, places, padding_size):
dev_reader = data_reader((self.data_dir + "/dev.tsv"), self.vocab,
self.num_examples, "dev", epoch, padding_size, shuffle)
loader = DataLoader.from_generator(capacity=50, return_list=True)
loader.set_sample_generator(dev_reader, batch_size=batch_size, drop_last=False, places=places)
return loader
def get_test_examples(self, data_dir, epoch, batch_size, places, padding_size):
test_reader = data_reader((self.data_dir + "/test.tsv"), self.vocab,
self.num_examples, "test", epoch, padding_size)
loader = DataLoader.from_generator(capacity=50, return_list=True)
loader.set_sample_generator(test_reader, batch_size=batch_size, drop_last=False, places=places)
return loader
def get_infer_examples(self, data_dir, epoch, batch_size, places, padding_size):
infer_reader = data_reader((self.data_dir + "/infer.tsv"), self.vocab,
self.num_examples, "infer", epoch, padding_size)
loader = DataLoader.from_generator(capacity=50, return_list=True)
loader.set_sample_generator(infer_reader, batch_size=batch_size, drop_last=False, places=places)
return loader
def get_labels(self):
return ["0", "1", "2"]
def get_num_examples(self, phase):
if phase not in ['train', 'dev', 'test', 'infer']:
raise ValueError(
"Unknown phase, which should be in ['train', 'dev', 'infer'].")
return self.num_examples[phase]
def get_train_progress(self):
return self.current_train_example, self.current_train_epoch
def data_generator(self, padding_size, batch_size, places, phase='train', epoch=1, shuffle=True):
if phase == "train":
return self.get_train_examples(self.data_dir, epoch, shuffle, batch_size, places, padding_size)
elif phase == "dev":
return self.get_dev_examples(self.data_dir, epoch, shuffle, batch_size, places, padding_size)
elif phase == "test":
return self.get_test_examples(self.data_dir, epoch, batch_size, places, padding_size)
elif phase == "infer":
return self.get_infer_examples(self.data_dir, epoch, batch_size, places, padding_size)
else:
raise ValueError(
"Unknown phase, which should be in ['train', 'dev', 'infer'].")
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import io
import os
import sys
import six
import random
import paddle
import paddle.fluid as fluid
import numpy as np
def word2id(word_dict, query):
"""
Convert word sequence into id list
"""
unk_id = len(word_dict)
wids = [
word_dict[w] if w in word_dict else unk_id
for w in query.strip().split(" ")
]
return wids
def pad_wid(wids, max_seq_len=128, pad_id=0):
"""
Padding data to max_seq_len
"""
seq_len = len(wids)
if seq_len < max_seq_len:
for i in range(max_seq_len - seq_len):
wids.append(pad_id)
else:
wids = wids[:max_seq_len]
return wids
def data_reader(file_path, word_dict, num_examples, phase, epoch, max_seq_len, shuffle=False):
"""
Data reader, which convert word sequence into id list
"""
unk_id = len(word_dict)
all_data = []
with io.open(file_path, "r", encoding='utf8') as fin:
for line in fin:
if line.startswith("label"):
continue
if phase == "infer":
cols = line.strip().split("\t")
query = cols[-1] if len(cols) != -1 else cols[0]
wids = word2id(word_dict, query)
wids = pad_wid(wids, max_seq_len, unk_id)
all_data.append((wids))
else:
cols = line.strip().split("\t")
if len(cols) != 2:
sys.stderr.write("[NOTICE] Error Format Line!")
continue
label = [int(cols[0])]
query = cols[1].strip()
wids = word2id(word_dict, query)
wids = pad_wid(wids, max_seq_len, unk_id)
all_data.append((wids, label))
num_examples[phase] = len(all_data)
if phase == "infer":
def reader():
"""
Infer reader function
"""
for wids in all_data:
yield wids
return reader
def reader():
"""
Reader function
"""
for idx in range(epoch):
if phase == "train" and shuffle:
random.shuffle(all_data)
for wids, label in all_data:
yield wids, label
return reader
def load_vocab(file_path):
"""
load the given vocabulary
"""
vocab = {}
with io.open(file_path, 'r', encoding='utf8') as fin:
wid = 0
for line in fin:
if line.strip() not in vocab:
vocab[line.strip()] = wid
wid += 1
vocab["<unk>"] = len(vocab)
return vocab
def query2ids(vocab_path, query):
"""
Convert query to id list according to the given vocab
"""
vocab = load_vocab(vocab_path)
wids = word2id(vocab, query)
return wids
......@@ -12,4 +12,4 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from hapi.text.senta.data_processer import SentaProcessor
from hapi.text.senta.data_processor import SentaProcessor
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册