Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
35e267f2
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
35e267f2
编写于
4月 09, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
extract input variable from feed
上级
e93f9d5d
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
62 addition
and
44 deletion
+62
-44
model.py
model.py
+18
-1
models/yolov3.py
models/yolov3.py
+2
-4
yolov3/coco.py
yolov3/coco.py
+12
-9
yolov3/main.py
yolov3/main.py
+2
-1
yolov3/transforms.py
yolov3/transforms.py
+28
-29
未找到文件。
model.py
浏览文件 @
35e267f2
...
...
@@ -360,10 +360,27 @@ class StaticGraphAdapter(object):
metric_list
,
metric_splits
=
flatten_list
(
endpoints
[
'metric'
])
fetch_list
=
endpoints
[
'loss'
]
+
metric_list
num_loss
=
len
(
endpoints
[
'loss'
])
# if fetch Variable is same as input Variable, do not fetch
# from program, get it from input directly
pruned_fetch_list
=
[]
pruned_fetch_idx_name_map
=
[
""
]
*
len
(
fetch_list
)
for
i
,
fetch_var
in
enumerate
(
fetch_list
):
if
fetch_var
.
name
in
feed
.
keys
():
pruned_fetch_idx_name_map
[
i
]
=
fetch_var
.
name
else
:
pruned_fetch_list
.
append
(
fetch_var
)
rets
=
self
.
_executor
.
run
(
compiled_prog
,
feed
=
feed
,
fetch_list
=
fetch_list
,
fetch_list
=
pruned_
fetch_list
,
return_numpy
=
False
)
# restore pruned fetch_list Variable from feeds
for
i
,
name
in
enumerate
(
pruned_fetch_idx_name_map
):
if
len
(
name
)
>
0
:
rets
.
insert
(
i
,
feed
[
name
])
# LoDTensor cannot be fetch as numpy directly
rets
=
[
np
.
array
(
v
)
for
v
in
rets
]
if
self
.
mode
==
'test'
:
...
...
models/yolov3.py
浏览文件 @
35e267f2
...
...
@@ -138,7 +138,7 @@ class YOLOv3(Model):
act
=
'leaky_relu'
))
self
.
route_blocks
.
append
(
route
)
def
forward
(
self
,
img_i
nfo
,
inputs
):
def
forward
(
self
,
img_i
d
,
img_shape
,
inputs
):
outputs
=
[]
boxes
=
[]
scores
=
[]
...
...
@@ -163,8 +163,6 @@ class YOLOv3(Model):
for
m
in
anchor_mask
:
mask_anchors
.
append
(
self
.
anchors
[
2
*
m
])
mask_anchors
.
append
(
self
.
anchors
[
2
*
m
+
1
])
img_shape
=
fluid
.
layers
.
slice
(
img_info
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
3
])
img_id
=
fluid
.
layers
.
slice
(
img_info
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
1
])
b
,
s
=
fluid
.
layers
.
yolo_box
(
x
=
block_out
,
img_size
=
img_shape
,
...
...
@@ -181,7 +179,7 @@ class YOLOv3(Model):
if
self
.
model_mode
==
'train'
:
return
outputs
preds
=
[
img_id
[
0
,
:]
,
preds
=
[
img_id
,
fluid
.
layers
.
multiclass_nms
(
bboxes
=
fluid
.
layers
.
concat
(
boxes
,
axis
=
1
),
scores
=
fluid
.
layers
.
concat
(
scores
,
axis
=
2
),
...
...
yolov3/coco.py
浏览文件 @
35e267f2
...
...
@@ -186,30 +186,31 @@ class COCODataset(Dataset):
data
=
np
.
frombuffer
(
f
.
read
(),
dtype
=
'uint8'
)
im
=
cv2
.
imdecode
(
data
,
1
)
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_BGR2RGB
)
im_info
=
np
.
array
([
roidb
[
'im_id'
][
0
],
roidb
[
'h'
],
roidb
[
'w'
]],
dtype
=
'int32'
)
im_id
=
roidb
[
'im_id'
]
im_shape
=
np
.
array
([
roidb
[
'h'
],
roidb
[
'w'
]],
dtype
=
'int32'
)
gt_bbox
=
roidb
[
'gt_bbox'
]
gt_class
=
roidb
[
'gt_class'
]
gt_score
=
roidb
[
'gt_score'
]
return
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
return
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
def
__getitem__
(
self
,
idx
):
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
=
self
.
_getitem_by_index
(
idx
)
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
=
self
.
_getitem_by_index
(
idx
)
if
self
.
_mixup
:
mixup_idx
=
idx
+
np
.
random
.
randint
(
1
,
self
.
__len__
())
mixup_idx
%=
self
.
__len__
()
_
,
mixup_im
,
mixup_bbox
,
mixup_class
,
_
=
\
_
,
_
,
mixup_im
,
mixup_bbox
,
mixup_class
,
_
=
\
self
.
_getitem_by_index
(
mixup_idx
)
im
,
gt_bbox
,
gt_class
,
gt_score
=
\
im
_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
=
\
self
.
_mixup_image
(
im
,
gt_bbox
,
gt_class
,
mixup_im
,
mixup_bbox
,
mixup_class
)
if
self
.
_transform
:
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
=
\
self
.
_transform
(
im_info
,
im
,
gt_bbox
,
gt_class
,
gt_score
)
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
=
\
self
.
_transform
(
im_id
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
)
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
def
_mixup_image
(
self
,
img1
,
bbox1
,
class1
,
img2
,
bbox2
,
class2
):
factor
=
np
.
random
.
beta
(
self
.
_alpha
,
self
.
_beta
)
...
...
@@ -234,7 +235,9 @@ class COCODataset(Dataset):
score2
=
np
.
ones_like
(
class2
,
dtype
=
"float32"
)
*
(
1.0
-
factor
)
gt_score
=
np
.
concatenate
((
score1
,
score2
),
axis
=
0
)
return
img
,
gt_bbox
,
gt_class
,
gt_score
im_shape
=
np
.
array
([
h
,
w
],
dtype
=
'int32'
)
return
im_shape
,
img
,
gt_bbox
,
gt_class
,
gt_score
@
property
def
mixup
(
self
):
...
...
yolov3/main.py
浏览文件 @
35e267f2
...
...
@@ -63,7 +63,8 @@ def main():
device
=
set_device
(
FLAGS
.
device
)
fluid
.
enable_dygraph
(
device
)
if
FLAGS
.
dynamic
else
None
inputs
=
[
Input
([
None
,
3
],
'int32'
,
name
=
'img_info'
),
inputs
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'img_id'
),
Input
([
None
,
2
],
'int32'
,
name
=
'img_shape'
),
Input
([
None
,
3
,
None
,
None
],
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
NUM_MAX_BOXES
,
4
],
'float32'
,
name
=
'gt_bbox'
),
Input
([
None
,
NUM_MAX_BOXES
],
'int32'
,
name
=
'gt_label'
),
...
...
yolov3/transforms.py
浏览文件 @
35e267f2
...
...
@@ -145,7 +145,7 @@ class ColorDistort(object):
img
+=
delta
return
img
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
if
self
.
random_apply
:
distortions
=
np
.
random
.
permutation
([
self
.
apply_brightness
,
self
.
apply_contrast
,
...
...
@@ -153,7 +153,7 @@ class ColorDistort(object):
])
for
func
in
distortions
:
im
=
func
(
im
)
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
im
=
self
.
apply_brightness
(
im
)
...
...
@@ -165,7 +165,7 @@ class ColorDistort(object):
im
=
self
.
apply_saturation
(
im
)
im
=
self
.
apply_hue
(
im
)
im
=
self
.
apply_contrast
(
im
)
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
class
RandomExpand
(
object
):
...
...
@@ -183,16 +183,16 @@ class RandomExpand(object):
self
.
prob
=
prob
self
.
fill_value
=
fill_value
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
if
np
.
random
.
uniform
(
0.
,
1.
)
<
self
.
prob
:
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
height
,
width
,
_
=
im
.
shape
expand_ratio
=
np
.
random
.
uniform
(
1.
,
self
.
ratio
)
h
=
int
(
height
*
expand_ratio
)
w
=
int
(
width
*
expand_ratio
)
if
not
h
>
height
or
not
w
>
width
:
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
y
=
np
.
random
.
randint
(
0
,
h
-
height
)
x
=
np
.
random
.
randint
(
0
,
w
-
width
)
canvas
=
np
.
ones
((
h
,
w
,
3
),
dtype
=
np
.
uint8
)
...
...
@@ -201,7 +201,7 @@ class RandomExpand(object):
gt_bbox
+=
np
.
array
([
x
,
y
,
x
,
y
],
dtype
=
np
.
float32
)
return
[
im_i
nfo
,
canvas
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
canvas
,
gt_bbox
,
gt_class
,
gt_score
]
class
RandomCrop
():
...
...
@@ -232,9 +232,9 @@ class RandomCrop():
self
.
allow_no_crop
=
allow_no_crop
self
.
cover_all_box
=
cover_all_box
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
if
len
(
gt_bbox
)
==
0
:
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
# NOTE Original method attempts to generate one candidate for each
# threshold then randomly sample one from the resulting list.
...
...
@@ -251,7 +251,7 @@ class RandomCrop():
for
thresh
in
thresholds
:
if
thresh
==
'no_crop'
:
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
h
,
w
,
_
=
im
.
shape
found
=
False
...
...
@@ -286,9 +286,9 @@ class RandomCrop():
gt_bbox
=
np
.
take
(
cropped_box
,
valid_ids
,
axis
=
0
)
gt_class
=
np
.
take
(
gt_class
,
valid_ids
,
axis
=
0
)
gt_score
=
np
.
take
(
gt_score
,
valid_ids
,
axis
=
0
)
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
def
_iou_matrix
(
self
,
a
,
b
):
tl_i
=
np
.
maximum
(
a
[:,
np
.
newaxis
,
:
2
],
b
[:,
:
2
])
...
...
@@ -334,7 +334,7 @@ class RandomFlip():
isinstance
(
self
.
is_normalized
,
bool
)):
raise
TypeError
(
"{}: input type is invalid."
.
format
(
self
))
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
"""Filp the image and bounding box.
Operators:
1. Flip the image numpy.
...
...
@@ -363,20 +363,20 @@ class RandomFlip():
m
=
"{}: invalid box, x2 should be greater than x1"
.
format
(
self
)
raise
ValueError
(
m
)
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
class
NormalizeBox
(
object
):
"""Transform the bounding box's coornidates to [0,1]."""
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
height
,
width
,
_
=
im
.
shape
for
i
in
range
(
gt_bbox
.
shape
[
0
]):
gt_bbox
[
i
][
0
]
=
gt_bbox
[
i
][
0
]
/
width
gt_bbox
[
i
][
1
]
=
gt_bbox
[
i
][
1
]
/
height
gt_bbox
[
i
][
2
]
=
gt_bbox
[
i
][
2
]
/
width
gt_bbox
[
i
][
3
]
=
gt_bbox
[
i
][
3
]
/
height
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
class
PadBox
(
object
):
...
...
@@ -388,7 +388,7 @@ class PadBox(object):
"""
self
.
num_max_boxes
=
num_max_boxes
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
gt_num
=
min
(
self
.
num_max_boxes
,
len
(
gt_bbox
))
num_max
=
self
.
num_max_boxes
...
...
@@ -406,7 +406,7 @@ class PadBox(object):
if
gt_num
>
0
:
pad_score
[:
gt_num
]
=
gt_score
[:
gt_num
,
0
]
gt_score
=
pad_score
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
class
BboxXYXY2XYWH
(
object
):
...
...
@@ -414,10 +414,10 @@ class BboxXYXY2XYWH(object):
Convert bbox XYXY format to XYWH format.
"""
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
gt_bbox
[:,
2
:
4
]
=
gt_bbox
[:,
2
:
4
]
-
gt_bbox
[:,
:
2
]
gt_bbox
[:,
:
2
]
=
gt_bbox
[:,
:
2
]
+
gt_bbox
[:,
2
:
4
]
/
2.
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
class
RandomShape
(
object
):
...
...
@@ -450,13 +450,13 @@ class RandomShape(object):
method
=
np
.
random
.
choice
(
self
.
interps
)
if
self
.
random_inter
\
else
cv2
.
INTER_NEAREST
for
i
in
range
(
len
(
samples
)):
im
=
samples
[
i
][
1
]
im
=
samples
[
i
][
2
]
h
,
w
=
im
.
shape
[:
2
]
scale_x
=
float
(
shape
)
/
w
scale_y
=
float
(
shape
)
/
h
im
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
scale_x
,
fy
=
scale_y
,
interpolation
=
method
)
samples
[
i
][
1
]
=
im
samples
[
i
][
2
]
=
im
return
samples
...
...
@@ -492,7 +492,7 @@ class NormalizeImage(object):
3. (optional) permute channel
"""
for
i
in
range
(
len
(
samples
)):
im
=
samples
[
i
][
1
]
im
=
samples
[
i
][
2
]
im
=
im
.
astype
(
np
.
float32
,
copy
=
False
)
mean
=
np
.
array
(
self
.
mean
)[
np
.
newaxis
,
np
.
newaxis
,
:]
std
=
np
.
array
(
self
.
std
)[
np
.
newaxis
,
np
.
newaxis
,
:]
...
...
@@ -502,7 +502,7 @@ class NormalizeImage(object):
im
/=
std
if
self
.
channel_first
:
im
=
im
.
transpose
((
2
,
0
,
1
))
samples
[
i
][
1
]
=
im
samples
[
i
][
2
]
=
im
return
samples
...
...
@@ -595,16 +595,15 @@ class ResizeImage(object):
format
(
type
(
target_size
)))
self
.
target_size
=
target_size
def
__call__
(
self
,
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
def
__call__
(
self
,
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
):
""" Resize the image numpy.
"""
if
not
isinstance
(
im
,
np
.
ndarray
):
raise
TypeError
(
"{}: image type is not numpy."
.
format
(
self
))
if
len
(
im
.
shape
)
!=
3
:
raise
ImageError
(
'{}: image is not 3-dimensional.'
.
format
(
self
))
im_shape
=
im
.
shape
im_scale_x
=
float
(
self
.
target_size
)
/
float
(
im_shape
[
1
])
im_scale_y
=
float
(
self
.
target_size
)
/
float
(
im_shape
[
0
])
im_scale_x
=
float
(
self
.
target_size
)
/
float
(
im
.
shape
[
1
])
im_scale_y
=
float
(
self
.
target_size
)
/
float
(
im
.
shape
[
0
])
resize_w
=
self
.
target_size
resize_h
=
self
.
target_size
...
...
@@ -616,5 +615,5 @@ class ResizeImage(object):
fy
=
im_scale_y
,
interpolation
=
self
.
interp
)
return
[
im_i
nfo
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
return
[
im_i
d
,
im_shape
,
im
,
gt_bbox
,
gt_class
,
gt_score
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录