From 35e267f20bd44af3df6355b5c8a155c5743be599 Mon Sep 17 00:00:00 2001 From: dengkaipeng Date: Thu, 9 Apr 2020 12:38:37 +0000 Subject: [PATCH] extract input variable from feed --- model.py | 19 ++++++++++++++- models/yolov3.py | 6 ++--- yolov3/coco.py | 21 +++++++++------- yolov3/main.py | 3 ++- yolov3/transforms.py | 57 ++++++++++++++++++++++---------------------- 5 files changed, 62 insertions(+), 44 deletions(-) diff --git a/model.py b/model.py index 6fecbf1..5bc126c 100644 --- a/model.py +++ b/model.py @@ -360,10 +360,27 @@ class StaticGraphAdapter(object): metric_list, metric_splits = flatten_list(endpoints['metric']) fetch_list = endpoints['loss'] + metric_list num_loss = len(endpoints['loss']) + + # if fetch Variable is same as input Variable, do not fetch + # from program, get it from input directly + pruned_fetch_list = [] + pruned_fetch_idx_name_map = [""] * len(fetch_list) + for i, fetch_var in enumerate(fetch_list): + if fetch_var.name in feed.keys(): + pruned_fetch_idx_name_map[i] = fetch_var.name + else: + pruned_fetch_list.append(fetch_var) + rets = self._executor.run(compiled_prog, feed=feed, - fetch_list=fetch_list, + fetch_list=pruned_fetch_list, return_numpy=False) + + # restore pruned fetch_list Variable from feeds + for i, name in enumerate(pruned_fetch_idx_name_map): + if len(name) > 0: + rets.insert(i, feed[name]) + # LoDTensor cannot be fetch as numpy directly rets = [np.array(v) for v in rets] if self.mode == 'test': diff --git a/models/yolov3.py b/models/yolov3.py index c2bbc88..c4428e3 100644 --- a/models/yolov3.py +++ b/models/yolov3.py @@ -138,7 +138,7 @@ class YOLOv3(Model): act='leaky_relu')) self.route_blocks.append(route) - def forward(self, img_info, inputs): + def forward(self, img_id, img_shape, inputs): outputs = [] boxes = [] scores = [] @@ -163,8 +163,6 @@ class YOLOv3(Model): for m in anchor_mask: mask_anchors.append(self.anchors[2 * m]) mask_anchors.append(self.anchors[2 * m + 1]) - img_shape = fluid.layers.slice(img_info, axes=[1], starts=[1], ends=[3]) - img_id = fluid.layers.slice(img_info, axes=[1], starts=[0], ends=[1]) b, s = fluid.layers.yolo_box( x=block_out, img_size=img_shape, @@ -181,7 +179,7 @@ class YOLOv3(Model): if self.model_mode == 'train': return outputs - preds = [img_id[0, :], + preds = [img_id, fluid.layers.multiclass_nms( bboxes=fluid.layers.concat(boxes, axis=1), scores=fluid.layers.concat(scores, axis=2), diff --git a/yolov3/coco.py b/yolov3/coco.py index 3480924..947f032 100644 --- a/yolov3/coco.py +++ b/yolov3/coco.py @@ -186,30 +186,31 @@ class COCODataset(Dataset): data = np.frombuffer(f.read(), dtype='uint8') im = cv2.imdecode(data, 1) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) - im_info = np.array([roidb['im_id'][0], roidb['h'], roidb['w']], dtype='int32') + im_id = roidb['im_id'] + im_shape = np.array([roidb['h'], roidb['w']], dtype='int32') gt_bbox = roidb['gt_bbox'] gt_class = roidb['gt_class'] gt_score = roidb['gt_score'] - return im_info, im, gt_bbox, gt_class, gt_score + return im_id, im_shape, im, gt_bbox, gt_class, gt_score def __getitem__(self, idx): - im_info, im, gt_bbox, gt_class, gt_score = self._getitem_by_index(idx) + im_id, im_shape, im, gt_bbox, gt_class, gt_score = self._getitem_by_index(idx) if self._mixup: mixup_idx = idx + np.random.randint(1, self.__len__()) mixup_idx %= self.__len__() - _, mixup_im, mixup_bbox, mixup_class, _ = \ + _, _, mixup_im, mixup_bbox, mixup_class, _ = \ self._getitem_by_index(mixup_idx) - im, gt_bbox, gt_class, gt_score = \ + im_shape, im, gt_bbox, gt_class, gt_score = \ self._mixup_image(im, gt_bbox, gt_class, mixup_im, mixup_bbox, mixup_class) if self._transform: - im_info, im, gt_bbox, gt_class, gt_score = \ - self._transform(im_info, im, gt_bbox, gt_class, gt_score) + im_id, im_shape, im, gt_bbox, gt_class, gt_score = \ + self._transform(im_id, im_shape, im, gt_bbox, gt_class, gt_score) - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] def _mixup_image(self, img1, bbox1, class1, img2, bbox2, class2): factor = np.random.beta(self._alpha, self._beta) @@ -234,7 +235,9 @@ class COCODataset(Dataset): score2 = np.ones_like(class2, dtype="float32") * (1.0 - factor) gt_score = np.concatenate((score1, score2), axis=0) - return img, gt_bbox, gt_class, gt_score + im_shape = np.array([h, w], dtype='int32') + + return im_shape, img, gt_bbox, gt_class, gt_score @property def mixup(self): diff --git a/yolov3/main.py b/yolov3/main.py index 18c24d1..9730d4f 100644 --- a/yolov3/main.py +++ b/yolov3/main.py @@ -63,7 +63,8 @@ def main(): device = set_device(FLAGS.device) fluid.enable_dygraph(device) if FLAGS.dynamic else None - inputs = [Input([None, 3], 'int32', name='img_info'), + inputs = [Input([None, 1], 'int64', name='img_id'), + Input([None, 2], 'int32', name='img_shape'), Input([None, 3, None, None], 'float32', name='image')] labels = [Input([None, NUM_MAX_BOXES, 4], 'float32', name='gt_bbox'), Input([None, NUM_MAX_BOXES], 'int32', name='gt_label'), diff --git a/yolov3/transforms.py b/yolov3/transforms.py index a5fbe46..f3d3ebe 100644 --- a/yolov3/transforms.py +++ b/yolov3/transforms.py @@ -145,7 +145,7 @@ class ColorDistort(object): img += delta return img - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): if self.random_apply: distortions = np.random.permutation([ self.apply_brightness, self.apply_contrast, @@ -153,7 +153,7 @@ class ColorDistort(object): ]) for func in distortions: im = func(im) - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] im = self.apply_brightness(im) @@ -165,7 +165,7 @@ class ColorDistort(object): im = self.apply_saturation(im) im = self.apply_hue(im) im = self.apply_contrast(im) - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] class RandomExpand(object): @@ -183,16 +183,16 @@ class RandomExpand(object): self.prob = prob self.fill_value = fill_value - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): if np.random.uniform(0., 1.) < self.prob: - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] height, width, _ = im.shape expand_ratio = np.random.uniform(1., self.ratio) h = int(height * expand_ratio) w = int(width * expand_ratio) if not h > height or not w > width: - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] y = np.random.randint(0, h - height) x = np.random.randint(0, w - width) canvas = np.ones((h, w, 3), dtype=np.uint8) @@ -201,7 +201,7 @@ class RandomExpand(object): gt_bbox += np.array([x, y, x, y], dtype=np.float32) - return [im_info, canvas, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, canvas, gt_bbox, gt_class, gt_score] class RandomCrop(): @@ -232,9 +232,9 @@ class RandomCrop(): self.allow_no_crop = allow_no_crop self.cover_all_box = cover_all_box - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): if len(gt_bbox) == 0: - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] # NOTE Original method attempts to generate one candidate for each # threshold then randomly sample one from the resulting list. @@ -251,7 +251,7 @@ class RandomCrop(): for thresh in thresholds: if thresh == 'no_crop': - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] h, w, _ = im.shape found = False @@ -286,9 +286,9 @@ class RandomCrop(): gt_bbox = np.take(cropped_box, valid_ids, axis=0) gt_class = np.take(gt_class, valid_ids, axis=0) gt_score = np.take(gt_score, valid_ids, axis=0) - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] def _iou_matrix(self, a, b): tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) @@ -334,7 +334,7 @@ class RandomFlip(): isinstance(self.is_normalized, bool)): raise TypeError("{}: input type is invalid.".format(self)) - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): """Filp the image and bounding box. Operators: 1. Flip the image numpy. @@ -363,20 +363,20 @@ class RandomFlip(): m = "{}: invalid box, x2 should be greater than x1".format( self) raise ValueError(m) - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] class NormalizeBox(object): """Transform the bounding box's coornidates to [0,1].""" - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): height, width, _ = im.shape for i in range(gt_bbox.shape[0]): gt_bbox[i][0] = gt_bbox[i][0] / width gt_bbox[i][1] = gt_bbox[i][1] / height gt_bbox[i][2] = gt_bbox[i][2] / width gt_bbox[i][3] = gt_bbox[i][3] / height - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] class PadBox(object): @@ -388,7 +388,7 @@ class PadBox(object): """ self.num_max_boxes = num_max_boxes - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): gt_num = min(self.num_max_boxes, len(gt_bbox)) num_max = self.num_max_boxes @@ -406,7 +406,7 @@ class PadBox(object): if gt_num > 0: pad_score[:gt_num] = gt_score[:gt_num, 0] gt_score = pad_score - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] class BboxXYXY2XYWH(object): @@ -414,10 +414,10 @@ class BboxXYXY2XYWH(object): Convert bbox XYXY format to XYWH format. """ - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2] gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2. - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] class RandomShape(object): @@ -450,13 +450,13 @@ class RandomShape(object): method = np.random.choice(self.interps) if self.random_inter \ else cv2.INTER_NEAREST for i in range(len(samples)): - im = samples[i][1] + im = samples[i][2] h, w = im.shape[:2] scale_x = float(shape) / w scale_y = float(shape) / h im = cv2.resize( im, None, None, fx=scale_x, fy=scale_y, interpolation=method) - samples[i][1] = im + samples[i][2] = im return samples @@ -492,7 +492,7 @@ class NormalizeImage(object): 3. (optional) permute channel """ for i in range(len(samples)): - im = samples[i][1] + im = samples[i][2] im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] @@ -502,7 +502,7 @@ class NormalizeImage(object): im /= std if self.channel_first: im = im.transpose((2, 0, 1)) - samples[i][1] = im + samples[i][2] = im return samples @@ -595,16 +595,15 @@ class ResizeImage(object): format(type(target_size))) self.target_size = target_size - def __call__(self, im_info, im, gt_bbox, gt_class, gt_score): + def __call__(self, im_id, im_shape, im, gt_bbox, gt_class, gt_score): """ Resize the image numpy. """ if not isinstance(im, np.ndarray): raise TypeError("{}: image type is not numpy.".format(self)) if len(im.shape) != 3: raise ImageError('{}: image is not 3-dimensional.'.format(self)) - im_shape = im.shape - im_scale_x = float(self.target_size) / float(im_shape[1]) - im_scale_y = float(self.target_size) / float(im_shape[0]) + im_scale_x = float(self.target_size) / float(im.shape[1]) + im_scale_y = float(self.target_size) / float(im.shape[0]) resize_w = self.target_size resize_h = self.target_size @@ -616,5 +615,5 @@ class ResizeImage(object): fy=im_scale_y, interpolation=self.interp) - return [im_info, im, gt_bbox, gt_class, gt_score] + return [im_id, im_shape, im, gt_bbox, gt_class, gt_score] -- GitLab