提交 1f63da12 编写于 作者: G guosheng

Fix TransformerCell and TransformerBeamSearchDecoder example codes.

test=develop
上级 56e2729c
...@@ -2226,7 +2226,7 @@ class CNNEncoder(Layer): ...@@ -2226,7 +2226,7 @@ class CNNEncoder(Layer):
return out return out
class TransformerCell(Layer): class TransformerCell(RNNCell):
""" """
TransformerCell wraps a Transformer decoder producing logits from `inputs` TransformerCell wraps a Transformer decoder producing logits from `inputs`
composed by ids and position. composed by ids and position.
...@@ -2249,9 +2249,13 @@ class TransformerCell(Layer): ...@@ -2249,9 +2249,13 @@ class TransformerCell(Layer):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell from paddle.incubate.hapi.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode
paddle.enable_dygraph()
class Embedder(fluid.dygraph.Layer): class Embedder(fluid.dygraph.Layer):
def __init__(self): def __init__(self):
...@@ -2259,8 +2263,7 @@ class TransformerCell(Layer): ...@@ -2259,8 +2263,7 @@ class TransformerCell(Layer):
self.word_embedder = Embedding(size=[1000, 128]) self.word_embedder = Embedding(size=[1000, 128])
self.pos_embedder = Embedding(size=[500, 128]) self.pos_embedder = Embedding(size=[500, 128])
def forward(self, inputs): def forward(self, word, position):
word, position = inputs
return self.word_embedder(word) + self.pos_embedder(position) return self.word_embedder(word) + self.pos_embedder(position)
embedder = Embedder() embedder = Embedder()
...@@ -2270,18 +2273,18 @@ class TransformerCell(Layer): ...@@ -2270,18 +2273,18 @@ class TransformerCell(Layer):
dynamic_decoder = DynamicDecode( dynamic_decoder = DynamicDecode(
TransformerBeamSearchDecoder( TransformerBeamSearchDecoder(
transformer_cell, transformer_cell,
bos_id=0, start_token=0,
eos_id=1, end_token=1,
beam_size=4, beam_size=4,
var_dim_in_state=2), var_dim_in_state=2),
max_step_num, max_step_num=10,
is_test=True) is_test=True)
enc_output = paddle.rand((2, 4, 64)) enc_output = paddle.rand((2, 4, 128))
# cross attention bias: [batch_size, n_head, trg_len, src_len] # cross attention bias: [batch_size, n_head, trg_len, src_len]
trg_src_attn_bias = paddle.rand((2, 2, 1, 4)) trg_src_attn_bias = paddle.rand((2, 2, 1, 4))
# inputs for beam search on Transformer # inputs for beam search on Transformer
states = cell.get_initial_states(encoder_output) caches = transformer_cell.get_initial_states(enc_output)
enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
enc_output, beam_size=4) enc_output, beam_size=4)
trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
...@@ -2389,7 +2392,7 @@ class TransformerCell(Layer): ...@@ -2389,7 +2392,7 @@ class TransformerCell(Layer):
return [{ return [{
"k": [self.decoder.n_head, 0, self.decoder.d_key], "k": [self.decoder.n_head, 0, self.decoder.d_key],
"v": [self.decoder.n_head, 0, self.decoder.d_value], "v": [self.decoder.n_head, 0, self.decoder.d_value],
} for i in range(len(self.decoder.n_layer))] } for i in range(self.decoder.n_layer)]
class TransformerBeamSearchDecoder(layers.BeamSearchDecoder): class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
...@@ -2413,17 +2416,21 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder): ...@@ -2413,17 +2416,21 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell from paddle.incubate.hapi.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode
paddle.enable_dygraph()
class Embedder(fluid.dygraph.Layer): class Embedder(fluid.dygraph.Layer):
def __init__(self): def __init__(self):
super(Embedder, self).__init__()
self.word_embedder = Embedding(size=[1000, 128]) self.word_embedder = Embedding(size=[1000, 128])
self.pos_embedder = Embedding(size=[500, 128]) self.pos_embedder = Embedding(size=[500, 128])
def forward(self, inputs): def forward(self, word, position):
word, position = inputs
return self.word_embedder(word) + self.pos_embedder(position) return self.word_embedder(word) + self.pos_embedder(position)
embedder = Embedder() embedder = Embedder()
...@@ -2433,18 +2440,18 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder): ...@@ -2433,18 +2440,18 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
dynamic_decoder = DynamicDecode( dynamic_decoder = DynamicDecode(
TransformerBeamSearchDecoder( TransformerBeamSearchDecoder(
transformer_cell, transformer_cell,
bos_id=0, start_token=0,
eos_id=1, end_token=1,
beam_size=4, beam_size=4,
var_dim_in_state=2), var_dim_in_state=2),
max_step_num, max_step_num=10,
is_test=True) is_test=True)
enc_output = paddle.rand((2, 4, 128)) enc_output = paddle.rand((2, 4, 128))
# cross attention bias: [batch_size, n_head, trg_len, src_len] # cross attention bias: [batch_size, n_head, trg_len, src_len]
trg_src_attn_bias = paddle.rand((2, 2, 1, 4)) trg_src_attn_bias = paddle.rand((2, 2, 1, 4))
# inputs for beam search on Transformer # inputs for beam search on Transformer
states = cell.get_initial_states(encoder_output) caches = transformer_cell.get_initial_states(enc_output)
enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
enc_output, beam_size=4) enc_output, beam_size=4)
trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册