Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
1f63da12
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1f63da12
编写于
5月 13, 2020
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix TransformerCell and TransformerBeamSearchDecoder example codes.
test=develop
上级
56e2729c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
17 deletion
+24
-17
hapi/text/text.py
hapi/text/text.py
+24
-17
未找到文件。
hapi/text/text.py
浏览文件 @
1f63da12
...
...
@@ -2226,7 +2226,7 @@ class CNNEncoder(Layer):
return
out
class
TransformerCell
(
Layer
):
class
TransformerCell
(
RNNCell
):
"""
TransformerCell wraps a Transformer decoder producing logits from `inputs`
composed by ids and position.
...
...
@@ -2249,9 +2249,13 @@ class TransformerCell(Layer):
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding
from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode
paddle.enable_dygraph()
class Embedder(fluid.dygraph.Layer):
def __init__(self):
...
...
@@ -2259,8 +2263,7 @@ class TransformerCell(Layer):
self.word_embedder = Embedding(size=[1000, 128])
self.pos_embedder = Embedding(size=[500, 128])
def forward(self, inputs):
word, position = inputs
def forward(self, word, position):
return self.word_embedder(word) + self.pos_embedder(position)
embedder = Embedder()
...
...
@@ -2270,18 +2273,18 @@ class TransformerCell(Layer):
dynamic_decoder = DynamicDecode(
TransformerBeamSearchDecoder(
transformer_cell,
bos_id
=0,
e
os_id
=1,
start_token
=0,
e
nd_token
=1,
beam_size=4,
var_dim_in_state=2),
max_step_num,
max_step_num
=10
,
is_test=True)
enc_output = paddle.rand((2, 4,
64
))
enc_output = paddle.rand((2, 4,
128
))
# cross attention bias: [batch_size, n_head, trg_len, src_len]
trg_src_attn_bias = paddle.rand((2, 2, 1, 4))
# inputs for beam search on Transformer
states = cell.get_initial_states(encoder
_output)
caches = transformer_cell.get_initial_states(enc
_output)
enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
enc_output, beam_size=4)
trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
...
...
@@ -2389,7 +2392,7 @@ class TransformerCell(Layer):
return
[{
"k"
:
[
self
.
decoder
.
n_head
,
0
,
self
.
decoder
.
d_key
],
"v"
:
[
self
.
decoder
.
n_head
,
0
,
self
.
decoder
.
d_value
],
}
for
i
in
range
(
len
(
self
.
decoder
.
n_layer
)
)]
}
for
i
in
range
(
self
.
decoder
.
n_layer
)]
class
TransformerBeamSearchDecoder
(
layers
.
BeamSearchDecoder
):
...
...
@@ -2413,17 +2416,21 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding
from paddle.fluid.dygraph import Embedding, Linear
from paddle.incubate.hapi.text import TransformerDecoder
from paddle.incubate.hapi.text import TransformerCell
from paddle.incubate.hapi.text import TransformerBeamSearchDecoder
from paddle.incubate.hapi.text import DynamicDecode
paddle.enable_dygraph()
class Embedder(fluid.dygraph.Layer):
def __init__(self):
super(Embedder, self).__init__()
self.word_embedder = Embedding(size=[1000, 128])
self.pos_embedder = Embedding(size=[500, 128])
def forward(self, inputs):
word, position = inputs
def forward(self, word, position):
return self.word_embedder(word) + self.pos_embedder(position)
embedder = Embedder()
...
...
@@ -2433,18 +2440,18 @@ class TransformerBeamSearchDecoder(layers.BeamSearchDecoder):
dynamic_decoder = DynamicDecode(
TransformerBeamSearchDecoder(
transformer_cell,
bos_id
=0,
e
os_id
=1,
start_token
=0,
e
nd_token
=1,
beam_size=4,
var_dim_in_state=2),
max_step_num,
max_step_num
=10
,
is_test=True)
enc_output = paddle.rand((2, 4, 128))
# cross attention bias: [batch_size, n_head, trg_len, src_len]
trg_src_attn_bias = paddle.rand((2, 2, 1, 4))
# inputs for beam search on Transformer
states = cell.get_initial_states(encoder
_output)
caches = transformer_cell.get_initial_states(enc
_output)
enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
enc_output, beam_size=4)
trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录