# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import ParamAttr from paddle.fluid.initializer import UniformInitializer from paddle.fluid.dygraph import Embedding, Linear, Layer from paddle.fluid.layers import BeamSearchDecoder from text import DynamicDecode, RNN, BasicLSTMCell, RNNCell from model import Model, Loss from seq2seq_base import Encoder class AttentionLayer(Layer): def __init__(self, hidden_size, bias=False, init_scale=0.1): super(AttentionLayer, self).__init__() self.input_proj = Linear( hidden_size, hidden_size, param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale)), bias_attr=bias) self.output_proj = Linear( hidden_size + hidden_size, hidden_size, param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale)), bias_attr=bias) def forward(self, hidden, encoder_output, encoder_padding_mask): query = self.input_proj(hidden) attn_scores = layers.matmul( layers.unsqueeze(query, [1]), encoder_output, transpose_y=True) if encoder_padding_mask is not None: attn_scores = layers.elementwise_add(attn_scores, encoder_padding_mask) attn_scores = layers.softmax(attn_scores) attn_out = layers.squeeze( layers.matmul(attn_scores, encoder_output), [1]) attn_out = layers.concat([attn_out, hidden], 1) attn_out = self.output_proj(attn_out) return attn_out class DecoderCell(RNNCell): def __init__(self, num_layers, input_size, hidden_size, dropout_prob=0., init_scale=0.1): super(DecoderCell, self).__init__() self.dropout_prob = dropout_prob # use add_sublayer to add multi-layers self.lstm_cells = [] for i in range(num_layers): self.lstm_cells.append( self.add_sublayer( "lstm_%d" % i, BasicLSTMCell( input_size=input_size + hidden_size if i == 0 else hidden_size, hidden_size=hidden_size))) self.attention_layer = AttentionLayer(hidden_size) def forward(self, step_input, states, encoder_output, encoder_padding_mask=None): lstm_states, input_feed = states new_lstm_states = [] step_input = layers.concat([step_input, input_feed], 1) for i, lstm_cell in enumerate(self.lstm_cells): out, new_lstm_state = lstm_cell(step_input, lstm_states[i]) step_input = layers.dropout( out, self.dropout_prob) if self.dropout_prob > 0 else out new_lstm_states.append(new_lstm_state) out = self.attention_layer(step_input, encoder_output, encoder_padding_mask) return out, [new_lstm_states, out] class Decoder(Layer): def __init__(self, vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., init_scale=0.1): super(Decoder, self).__init__() self.embedder = Embedding( size=[vocab_size, embed_dim], param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale))) self.lstm_attention = RNN(DecoderCell(num_layers, embed_dim, hidden_size, init_scale), is_reverse=False, time_major=False) self.output_layer = Linear( hidden_size, vocab_size, param_attr=ParamAttr(initializer=UniformInitializer( low=-init_scale, high=init_scale)), bias_attr=False) def forward(self, target, decoder_initial_states, encoder_output, encoder_padding_mask): inputs = self.embedder(target) decoder_output, _ = self.lstm_attention( inputs, initial_states=decoder_initial_states, encoder_output=encoder_output, encoder_padding_mask=encoder_padding_mask) predict = self.output_layer(decoder_output) return predict class AttentionModel(Model): def __init__(self, src_vocab_size, trg_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., init_scale=0.1): super(AttentionModel, self).__init__() self.hidden_size = hidden_size self.encoder = Encoder(src_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob, init_scale) self.decoder = Decoder(trg_vocab_size, embed_dim, hidden_size, num_layers, dropout_prob, init_scale) def forward(self, src, src_length, trg, trg_length): # encoder encoder_output, encoder_final_state = self.encoder(src, src_length) # decoder initial states: use input_feed and the structure is # [[h,c] * num_layers, input_feed], consistent with DecoderCell.states decoder_initial_states = [ encoder_final_state, self.decoder.lstm_attention.cell.get_initial_states( batch_ref=encoder_output, shape=[self.hidden_size]) ] # attention mask to avoid paying attention on padddings src_mask = layers.sequence_mask( src_length, maxlen=layers.shape(src)[1], dtype=encoder_output.dtype) encoder_padding_mask = (src_mask - 1.0) * 1e9 encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1]) # decoder with attentioon predict = self.decoder(trg, decoder_initial_states, encoder_output, encoder_padding_mask) # for target padding mask mask = layers.sequence_mask( trg_length, maxlen=layers.shape(trg)[1], dtype=predict.dtype) return predict, mask class AttentionInferModel(AttentionModel): def __init__(self, vocab_size, embed_dim, hidden_size, num_layers, dropout_prob=0., bos_id=0, eos_id=1, beam_size=4, max_out_len=256): args = dict(locals()) args.pop("self") args.pop("__class__", None) # py3 self.beam_size = args.pop("beam_size") self.max_out_len = args.pop("max_out_len") super(AttentionInferModel, self).__init__(**args) # dynamic decoder for inference decoder = BeamSearchDecoder( self.decoder.lstm_attention.cell, start_token=bos_id, end_token=eos_id, beam_size=beam_size, embedding_fn=self.decoder.embedder, output_fn=self.decoder.output_layer) self.beam_search_decoder = DynamicDecode( decoder, max_step_num=max_out_len, is_test=True) def forward(self, src, src_length): # encoding encoder_output, encoder_final_state = self.encoder(src, src_length) # decoder initial states decoder_initial_states = [ encoder_final_state, self.decoder.lstm_attention.cell.get_initial_states( batch_ref=encoder_output, shape=[self.hidden_size]) ] # attention mask to avoid paying attention on padddings src_mask = layers.sequence_mask( src_length, maxlen=layers.shape(src)[1], dtype=encoder_output.dtype) encoder_padding_mask = (src_mask - 1.0) * 1e9 encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1]) # Tile the batch dimension with beam_size encoder_output = BeamSearchDecoder.tile_beam_merge_with_batch( encoder_output, self.beam_size) encoder_padding_mask = BeamSearchDecoder.tile_beam_merge_with_batch( encoder_padding_mask, self.beam_size) # dynamic decoding with beam search rs, _ = self.beam_search_decoder( inits=decoder_initial_states, encoder_output=encoder_output, encoder_padding_mask=encoder_padding_mask) return rs