train.py 4.8 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

15
import paddle
H
huangjun12 已提交
16 17 18 19 20 21 22 23
import paddle.fluid as fluid
import argparse
import logging
import sys
import os

from reader import BmnDataset
from config_utils import *
D
dengkaipeng 已提交
24
from modeling import bmn, BmnLoss
H
huangjun12 已提交
25 26 27 28 29 30 31 32 33 34 35 36

DATATYPE = 'float32'

logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser("Paddle high level api of BMN.")
    parser.add_argument(
H
huangjun12 已提交
37
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
H
huangjun12 已提交
38 39 40 41 42 43 44 45 46
    parser.add_argument(
        '--config_file',
        type=str,
        default='bmn.yaml',
        help='path to config file of model')
    parser.add_argument(
        '--batch_size',
        type=int,
        default=None,
H
huangjun12 已提交
47
        help='training batch size. None for read from config file.')
H
huangjun12 已提交
48 49 50
    parser.add_argument(
        '--learning_rate',
        type=float,
51
        default=None,
H
huangjun12 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        help='learning rate use for training. None to use config file setting.')
    parser.add_argument(
        '--resume',
        type=str,
        default=None,
        help='filename to resume training based on previous checkpoints. '
        'None for not resuming any checkpoints.')
    parser.add_argument(
        '--device',
        type=str,
        default='gpu',
        help='gpu or cpu, default use gpu.')
    parser.add_argument(
        '--epoch',
        type=int,
H
huangjun12 已提交
67 68
        default=None,
        help='epoch number, None for read from config file')
H
huangjun12 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    parser.add_argument(
        '--valid_interval',
        type=int,
        default=1,
        help='validation epoch interval, 0 for no validation.')
    parser.add_argument(
        '--save_dir',
        type=str,
        default="checkpoint",
        help='path to save train snapshoot')
    parser.add_argument(
        '--log_interval',
        type=int,
        default=10,
        help='mini-batch interval to log.')
    args = parser.parse_args()
    return args


# Optimizer
def optimizer(cfg, parameter_list):
    bd = [cfg.TRAIN.lr_decay_iter]
    base_lr = cfg.TRAIN.learning_rate
    lr_decay = cfg.TRAIN.learning_rate_decay
    l2_weight_decay = cfg.TRAIN.l2_weight_decay
    lr = [base_lr, base_lr * lr_decay]
    optimizer = fluid.optimizer.Adam(
        fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        parameter_list=parameter_list,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=l2_weight_decay))
    return optimizer


# TRAIN
def train_bmn(args):
106 107
    device = paddle.set_device(args.device)
    paddle.disable_static(device) if args.dynamic else None
H
huangjun12 已提交
108 109 110 111

    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)

H
huangjun12 已提交
112
    #config setting
H
huangjun12 已提交
113 114 115 116
    config = parse_config(args.config_file)
    train_cfg = merge_configs(config, 'train', vars(args))
    val_cfg = merge_configs(config, 'valid', vars(args))

H
huangjun12 已提交
117 118 119 120 121 122 123
    feat_dim = config.MODEL.feat_dim
    tscale = config.MODEL.tscale
    dscale = config.MODEL.dscale
    prop_boundary_ratio = config.MODEL.prop_boundary_ratio
    num_sample = config.MODEL.num_sample
    num_sample_perbin = config.MODEL.num_sample_perbin

H
huangjun12 已提交
124 125 126 127 128
    # data
    train_dataset = BmnDataset(train_cfg, 'train')
    val_dataset = BmnDataset(val_cfg, 'valid')

    # model
H
huangjun12 已提交
129 130
    model = bmn(tscale,
                dscale,
131
                feat_dim,
H
huangjun12 已提交
132 133 134
                prop_boundary_ratio,
                num_sample,
                num_sample_perbin,
135
                mode='train',
H
huangjun12 已提交
136
                pretrained=False)
H
huangjun12 已提交
137
    optim = optimizer(config, parameter_list=model.parameters())
138
    model.prepare(optimizer=optim, loss=BmnLoss(tscale, dscale))
H
huangjun12 已提交
139 140 141 142 143 144 145

    # if resume weights is given, load resume weights directly
    if args.resume is not None:
        model.load(args.resume)
    model.fit(train_data=train_dataset,
              eval_data=val_dataset,
              batch_size=train_cfg.TRAIN.batch_size,
H
huangjun12 已提交
146
              epochs=train_cfg.TRAIN.epoch,
H
huangjun12 已提交
147 148 149 150 151 152 153 154 155 156 157
              eval_freq=args.valid_interval,
              log_freq=args.log_interval,
              save_dir=args.save_dir,
              shuffle=train_cfg.TRAIN.use_shuffle,
              num_workers=train_cfg.TRAIN.num_workers,
              drop_last=True)


if __name__ == "__main__":
    args = parse_args()
    train_bmn(args)