train.py 5.0 KB
Newer Older
Q
qingqing01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
import sys
import random
import numpy as np

import argparse
import functools

Q
qingqing01 已提交
24
import paddle
Q
qingqing01 已提交
25 26
import paddle.fluid as fluid

Q
qingqing01 已提交
27 28
from paddle.static import InputSpec as Input
from paddle.vision.transforms import BatchCompose
Q
qingqing01 已提交
29 30

from utility import add_arguments, print_arguments
31
from utility import SeqAccuracy, LoggerCallBack
Q
qingqing01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from seq2seq_attn import Seq2SeqAttModel, WeightCrossEntropy
import data

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   32,           "Minibatch size.")
add_arg('epoch',             int,   30,           "Epoch number.")
add_arg('num_workers',       int,   0,            "workers number.")
add_arg('lr',                float, 0.001,        "Learning rate.")
add_arg('lr_decay_strategy', str,   "",           "Learning rate decay strategy.")
add_arg('checkpoint_path',   str,   "checkpoint", "The directory the model to be saved to.")
add_arg('train_images',      str,   None,         "The directory of images to be used for training.")
add_arg('train_list',        str,   None,         "The list file of images to be used for training.")
add_arg('test_images',       str,   None,         "The directory of images to be used for test.")
add_arg('test_list',         str,   None,         "The list file of images to be used for training.")
add_arg('resume_path',       str,   None,         "The init model file of directory.")
add_arg('use_gpu',           bool,  True,         "Whether use GPU to train.")
# model hyper paramters
add_arg('encoder_size',      int,   200,     "Encoder size.")
add_arg('decoder_size',      int,   128,     "Decoder size.")
add_arg('embedding_dim',     int,   128,     "Word vector dim.")
add_arg('num_classes',       int,   95,     "Number classes.")
add_arg('gradient_clip',     float, 5.0,     "Gradient clip value.")
add_arg('dynamic',           bool,  False,      "Whether to use dygraph.")
# yapf: enable


def main(FLAGS):
Q
qingqing01 已提交
61
    device = paddle.set_device("gpu" if FLAGS.use_gpu else "cpu")
Q
qingqing01 已提交
62
    paddle.disable_static(device) if FLAGS.dynamic else None
Q
qingqing01 已提交
63

Q
qingqing01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    # yapf: disable
    inputs = [
        Input([None,1,48,384], "float32", name="pixel"),
        Input([None, None], "int64", name="label_in"),
    ]
    labels = [
        Input([None, None], "int64", name="label_out"),
        Input([None, None], "float32", name="mask"),
    ]
    # yapf: enable

    model = paddle.Model(
        Seq2SeqAttModel(
            encoder_size=FLAGS.encoder_size,
            decoder_size=FLAGS.decoder_size,
            emb_dim=FLAGS.embedding_dim,
            num_classes=FLAGS.num_classes),
        inputs,
        labels)
Q
qingqing01 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95

    lr = FLAGS.lr
    if FLAGS.lr_decay_strategy == "piecewise_decay":
        learning_rate = fluid.layers.piecewise_decay(
            [200000, 250000], [lr, lr * 0.1, lr * 0.01])
    else:
        learning_rate = lr
    grad_clip = fluid.clip.GradientClipByGlobalNorm(FLAGS.gradient_clip)
    optimizer = fluid.optimizer.Adam(
        learning_rate=learning_rate,
        parameter_list=model.parameters(),
        grad_clip=grad_clip)

Q
qingqing01 已提交
96
    model.prepare(optimizer, WeightCrossEntropy(), SeqAccuracy())
Q
qingqing01 已提交
97 98

    train_dataset = data.train()
Q
qingqing01 已提交
99
    train_collate_fn = BatchCompose(
Q
qingqing01 已提交
100
        [data.Resize(), data.Normalize(), data.PadTarget()])
Q
qingqing01 已提交
101
    train_sampler = data.BatchSampler(
Q
qingqing01 已提交
102
        train_dataset, batch_size=FLAGS.batch_size, shuffle=True)
Q
qingqing01 已提交
103
    train_loader = paddle.io.DataLoader(
Q
qingqing01 已提交
104 105 106 107 108 109 110
        train_dataset,
        batch_sampler=train_sampler,
        places=device,
        num_workers=FLAGS.num_workers,
        return_list=True,
        collate_fn=train_collate_fn)
    test_dataset = data.test()
Q
qingqing01 已提交
111
    test_collate_fn = BatchCompose(
Q
qingqing01 已提交
112
        [data.Resize(), data.Normalize(), data.PadTarget()])
Q
qingqing01 已提交
113
    test_sampler = data.BatchSampler(
Q
qingqing01 已提交
114 115 116 117
        test_dataset,
        batch_size=FLAGS.batch_size,
        drop_last=False,
        shuffle=False)
Q
qingqing01 已提交
118
    test_loader = paddle.io.DataLoader(
Q
qingqing01 已提交
119 120 121 122 123 124 125 126 127 128 129
        test_dataset,
        batch_sampler=test_sampler,
        places=device,
        num_workers=0,
        return_list=True,
        collate_fn=test_collate_fn)

    model.fit(train_data=train_loader,
              eval_data=test_loader,
              epochs=FLAGS.epoch,
              save_dir=FLAGS.checkpoint_path,
130
              callbacks=[LoggerCallBack(10, 2, FLAGS.batch_size)])
Q
qingqing01 已提交
131 132 133 134 135 136


if __name__ == '__main__':
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    main(FLAGS)