# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import sys import random import numpy as np import argparse import functools import paddle import paddle.fluid as fluid from paddle.static import InputSpec as Input from paddle.vision.transforms import BatchCompose from utility import add_arguments, print_arguments from utility import SeqAccuracy, LoggerCallBack from seq2seq_attn import Seq2SeqAttModel, WeightCrossEntropy import data parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 32, "Minibatch size.") add_arg('epoch', int, 30, "Epoch number.") add_arg('num_workers', int, 0, "workers number.") add_arg('lr', float, 0.001, "Learning rate.") add_arg('lr_decay_strategy', str, "", "Learning rate decay strategy.") add_arg('checkpoint_path', str, "checkpoint", "The directory the model to be saved to.") add_arg('train_images', str, None, "The directory of images to be used for training.") add_arg('train_list', str, None, "The list file of images to be used for training.") add_arg('test_images', str, None, "The directory of images to be used for test.") add_arg('test_list', str, None, "The list file of images to be used for training.") add_arg('resume_path', str, None, "The init model file of directory.") add_arg('use_gpu', bool, True, "Whether use GPU to train.") # model hyper paramters add_arg('encoder_size', int, 200, "Encoder size.") add_arg('decoder_size', int, 128, "Decoder size.") add_arg('embedding_dim', int, 128, "Word vector dim.") add_arg('num_classes', int, 95, "Number classes.") add_arg('gradient_clip', float, 5.0, "Gradient clip value.") add_arg('dynamic', bool, False, "Whether to use dygraph.") # yapf: enable def main(FLAGS): device = paddle.set_device("gpu" if FLAGS.use_gpu else "cpu") paddle.disable_static(device) if FLAGS.dynamic else None # yapf: disable inputs = [ Input([None,1,48,384], "float32", name="pixel"), Input([None, None], "int64", name="label_in"), ] labels = [ Input([None, None], "int64", name="label_out"), Input([None, None], "float32", name="mask"), ] # yapf: enable model = paddle.Model( Seq2SeqAttModel( encoder_size=FLAGS.encoder_size, decoder_size=FLAGS.decoder_size, emb_dim=FLAGS.embedding_dim, num_classes=FLAGS.num_classes), inputs, labels) lr = FLAGS.lr if FLAGS.lr_decay_strategy == "piecewise_decay": learning_rate = fluid.layers.piecewise_decay( [200000, 250000], [lr, lr * 0.1, lr * 0.01]) else: learning_rate = lr grad_clip = fluid.clip.GradientClipByGlobalNorm(FLAGS.gradient_clip) optimizer = fluid.optimizer.Adam( learning_rate=learning_rate, parameter_list=model.parameters(), grad_clip=grad_clip) model.prepare(optimizer, WeightCrossEntropy(), SeqAccuracy()) train_dataset = data.train() train_collate_fn = BatchCompose( [data.Resize(), data.Normalize(), data.PadTarget()]) train_sampler = data.BatchSampler( train_dataset, batch_size=FLAGS.batch_size, shuffle=True) train_loader = paddle.io.DataLoader( train_dataset, batch_sampler=train_sampler, places=device, num_workers=FLAGS.num_workers, return_list=True, collate_fn=train_collate_fn) test_dataset = data.test() test_collate_fn = BatchCompose( [data.Resize(), data.Normalize(), data.PadTarget()]) test_sampler = data.BatchSampler( test_dataset, batch_size=FLAGS.batch_size, drop_last=False, shuffle=False) test_loader = paddle.io.DataLoader( test_dataset, batch_sampler=test_sampler, places=device, num_workers=0, return_list=True, collate_fn=test_collate_fn) model.fit(train_data=train_loader, eval_data=test_loader, epochs=FLAGS.epoch, save_dir=FLAGS.checkpoint_path, callbacks=[LoggerCallBack(10, 2, FLAGS.batch_size)]) if __name__ == '__main__': FLAGS = parser.parse_args() print_arguments(FLAGS) main(FLAGS)